Prochazka Laura, Angelici Bartolomeo, Haefliger Benjamin, Benenson Yaakov
Department of Biosystems Science and Engineering (D-BSSE), Swiss Federal Institute of Technology (ETH) Zürich, Mattenstrasse 26, Basel 4058, Switzerland.
Nat Commun. 2014 Oct 14;5:4729. doi: 10.1038/ncomms5729.
Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the 'bow-tie' architecture, which stipulates a focal component-a 'knot'-uncoupling circuits' inputs and outputs, simplifying component swapping, and introducing additional layer of control. Here we construct, in cultured human cells, synthetic bow-tie circuits that transduce microRNA inputs into protein outputs with independently programmable logical and dynamic behaviour. The latter is adjusted via two different knot configurations: a transcriptional activator causing the outputs to track input changes reversibly, and a recombinase-based cascade, converting transient inputs into permanent actuation. We characterize the circuits in HEK293 cells, confirming their modularity and scalability, and validate them using endogenous microRNA inputs in additional cell lines. This platform can be used for biotechnological and biomedical applications in vitro, in vivo and potentially in human therapy.
合成基因电路通常需要对其组件进行广泛的相互优化才能成功运行,而模块化和可编程设计平台却很少见。一种可能的解决方案在于“领结”架构,该架构规定了一个核心组件——一个“节点”——将电路的输入和输出解耦,简化组件交换,并引入额外的控制层。在这里,我们在培养的人类细胞中构建了合成领结电路,该电路将微小RNA输入转化为具有独立可编程逻辑和动态行为的蛋白质输出。后者通过两种不同的节点配置进行调整:一种转录激活因子使输出可逆地跟踪输入变化,以及一种基于重组酶的级联反应,将瞬态输入转化为永久激活。我们在HEK293细胞中对这些电路进行了表征,证实了它们的模块化和可扩展性,并在其他细胞系中使用内源性微小RNA输入对其进行了验证。该平台可用于体外、体内以及潜在的人类治疗中的生物技术和生物医学应用。