Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland.
PLoS Comput Biol. 2020 Nov 30;16(11):e1008389. doi: 10.1371/journal.pcbi.1008389. eCollection 2020 Nov.
The mapping of molecular inputs to their molecular outputs (input/output, I/O mapping) is an important characteristic of gene circuits, both natural and synthetic. Experimental determination of such mappings for synthetic circuits is best performed using stably integrated genetic constructs. In mammalian cells, stable integration of complex circuits is a time-consuming process that hampers rapid characterization of multiple circuit variants. On the other hand, transient transfection is quick. However, it is an extremely noisy process and it is unclear whether the obtained data have any relevance to the input/output mapping of a circuit obtained in the case of a stable integration. Here we describe a data processing workflow, Peakfinder algorithm for flow cytometry data (PFAFF), that allows extracting precise input/output mapping from single-cell protein expression data gathered by flow cytometry after a transient transfection. The workflow builds on the numerically-proven observation that the multivariate modes of input and output expression of multi-channel flow cytometry datasets, pre-binned by the expression level of an independent transfection reporter gene, harbor cells with circuit gene copy numbers distributions that depend deterministically on the properties of a bin. We validate our method by simulating flow cytometry data for seven multi-node circuit architectures, including a complex bi-modal circuit, under stable integration and transient transfection scenarios. The workflow applied to the simulated transient transfection data results in similar conclusions to those reached with simulated stable integration data. This indicates that the input/output mapping derived from transient transfection data using our method is an excellent approximation of the ground truth. Thus, the method allows to determine input/output mapping of complex gene network using noisy transient transfection data.
分子输入到其分子输出的映射(输入/输出,I/O 映射)是基因电路的一个重要特征,无论是天然的还是合成的。使用稳定整合的遗传构建体来实验确定这种合成电路的映射是最佳的。在哺乳动物细胞中,复杂电路的稳定整合是一个耗时的过程,这阻碍了对多个电路变体的快速表征。另一方面,瞬时转染很快。然而,它是一个极其嘈杂的过程,并且不清楚所获得的数据是否与稳定整合情况下电路的输入/输出映射有关。在这里,我们描述了一种数据处理工作流程,即用于流式细胞术数据的峰查找算法(PFAFF),该算法允许从通过流式细胞术在瞬时转染后收集的单细胞蛋白表达数据中提取精确的输入/输出映射。该工作流程基于数值上证明的观察结果,即多通道流式细胞术数据集的输入和输出表达的多元模式,通过独立转染报告基因的表达水平进行预分箱,包含了细胞的电路基因拷贝数分布,这些分布取决于分箱的特性。我们通过模拟在稳定整合和瞬时转染场景下的七种多节点电路结构(包括一个复杂的双模态电路)的流式细胞术数据来验证我们的方法。将工作流程应用于模拟的瞬时转染数据会导致与使用模拟稳定整合数据得出的类似结论。这表明,使用我们的方法从瞬时转染数据中得出的输入/输出映射是对真实情况的极好近似。因此,该方法允许使用嘈杂的瞬时转染数据来确定复杂基因网络的输入/输出映射。