Suppr超能文献

从三维光学相干断层扫描图像中实现视网膜表面的精确表面配准。

Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.

作者信息

Lee Sieun, Lebed Evgeniy, Sarunic Marinko V, Beg Mirza Faisal

出版信息

IEEE Trans Biomed Eng. 2015 Feb;62(2):609-17. doi: 10.1109/TBME.2014.2361778. Epub 2014 Oct 8.

Abstract

Nonrigid registration of optical coherence tomography (OCT) images is an important problem in studying eye diseases, evaluating the effect of pharmaceuticals in treating vision loss, and performing group-wise cross-sectional analysis. High dimensional nonrigid registration algorithms required for cross-sectional and longitudinal analysis are still being developed for accurate registration of OCT image volumes, with the speckle noise in images presenting a challenge for registration. Development of algorithms for segmentation of OCT images to generate surface models of retinal layers has advanced considerably and several algorithms are now available that can segment retinal OCT images into constituent retinal surfaces. Important morphometric measurements can be extracted if accurate surface registration algorithm for registering retinal surfaces onto corresponding template surfaces were available. In this paper, we present a novel method to perform multiple and simultaneous retinal surface registration, targeted to registering surfaces extracted from ocular volumetric OCT images. This enables a point-to-point correspondence (homology) between template and subject surfaces, allowing for a direct, vertex-wise comparison of morphometric measurements across subject groups. We demonstrate that this approach can be used to localize and analyze regional changes in choroidal and nerve fiber layer thickness among healthy and glaucomatous subjects, allowing for cross-sectional population wise analysis. We also demonstrate the method's ability to track longitudinal changes in optic nerve head morphometry, allowing for within-individual tracking of morphometric changes. This method can also, in the future, be used as a precursor to 3-D OCT image registration to better initialize nonrigid image registration algorithms closer to the desired solution.

摘要

光学相干断层扫描(OCT)图像的非刚性配准是研究眼部疾病、评估药物治疗视力丧失效果以及进行分组横断面分析中的一个重要问题。用于横断面和纵向分析所需的高维非刚性配准算法仍在开发中,以实现OCT图像体积的精确配准,而图像中的散斑噪声给配准带来了挑战。OCT图像分割算法的发展已取得显著进展,以生成视网膜层的表面模型,现在有几种算法可将视网膜OCT图像分割成组成视网膜表面。如果有用于将视网膜表面配准到相应模板表面的精确表面配准算法,就可以提取重要的形态测量值。在本文中,我们提出了一种新颖的方法来执行多个同时进行的视网膜表面配准,目标是配准从眼部容积OCT图像中提取的表面。这实现了模板表面与受试者表面之间的点对点对应(同源性),允许对不同受试者组的形态测量值进行直接的、逐顶点比较。我们证明,这种方法可用于定位和分析健康受试者与青光眼受试者脉络膜和神经纤维层厚度的区域变化,从而进行横断面群体分析。我们还展示了该方法跟踪视神经乳头形态测量纵向变化的能力,从而实现个体内部形态测量变化的跟踪。该方法未来还可作为三维OCT图像配准的前奏,以便更接近期望解更好地初始化非刚性图像配准算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验