Suppr超能文献

通过冷冻电镜重建得到的多态原子模型揭示噬菌体T7的衣壳扩张机制

Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions.

作者信息

Guo Fei, Liu Zheng, Fang Ping-An, Zhang Qinfen, Wright Elena T, Wu Weimin, Zhang Ci, Vago Frank, Ren Yue, Jakana Joanita, Chiu Wah, Serwer Philip, Jiang Wen

机构信息

Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907;

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4606-14. doi: 10.1073/pnas.1407020111. Epub 2014 Oct 13.

Abstract

Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.

摘要

许多双链DNA病毒首先利用依赖支架蛋白的过程组装无DNA的原衣壳。然后,原衣壳在包装DNA时经历显著的构象成熟。对于噬菌体T7,我们报告了以下四个单颗粒冷冻电镜三维重建和推导的原子模型:原衣壳(分辨率为4.6 Å)、早期DNA包装中间体(3.5 Å)、后期包装中间体(6.6 Å)和最终感染性噬菌体(3.6 Å)。在原衣壳中,主要衣壳蛋白gp10的N末端在壳的内表面有一个六圈螺旋,其中每个倾斜的gp10六聚体与两个支架蛋白相互作用。随着成熟过程中支架蛋白的退出,gp10 N末端螺旋展开并穿过衣壳壳摆动到外表面。重新折叠的N末端区域有一个发夹结构,与壳扩张过程中形成的口袋形成一种新的非共价、关节状、衣壳间相互作用。这些大的构象变化还导致了一种新的非共价、衣壳内拓扑连接。这两种相互作用通过将DNA包装中间体和噬菌体中的所有五聚体和六聚体衣壳粒联锁,进一步稳定了衣壳。尽管最终的噬菌体壳与无DNA中间体的壳结构几乎相同,但令人惊讶的是,我们发现,尽管有密集包装的DNA基因组产生的内部压力,噬菌体的二十面体面相对于中间体的面略有收缩(约4 Å)。这些结构为理解DNA包装过程中的衣壳成熟过程提供了基础,而这一过程对于大量双链DNA病毒来说至关重要。

相似文献

1
Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4606-14. doi: 10.1073/pnas.1407020111. Epub 2014 Oct 13.
2
Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging.
J Virol. 2016 Apr 29;90(10):5176-86. doi: 10.1128/JVI.03224-15. Print 2016 May 15.
3
Structural basis of bacteriophage lambda capsid maturation.
Structure. 2022 Apr 7;30(4):637-645.e3. doi: 10.1016/j.str.2021.12.009. Epub 2022 Jan 12.
5
Molecular mechanisms in bacteriophage T7 procapsid assembly, maturation, and DNA containment.
Adv Protein Chem. 2003;64:301-23. doi: 10.1016/s0065-3233(03)01008-8.
6
Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1355-60. doi: 10.1073/pnas.1015739108. Epub 2011 Jan 10.
7
Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo.
J Mol Biol. 2008 Dec 31;384(5):1384-99. doi: 10.1016/j.jmb.2008.10.012. Epub 2008 Oct 14.
9
Maturation of phage T7 involves structural modification of both shell and inner core components.
EMBO J. 2005 Nov 2;24(21):3820-9. doi: 10.1038/sj.emboj.7600840. Epub 2005 Oct 6.
10
Structure of a headful DNA-packaging bacterial virus at 2.9 Å resolution by electron cryo-microscopy.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3601-3606. doi: 10.1073/pnas.1615025114. Epub 2017 Mar 20.

引用本文的文献

1
The discovery of a phage explains a key determinant of human disease.
Sci Adv. 2025 Sep 5;11(36):eadx9722. doi: 10.1126/sciadv.adx9722. Epub 2025 Sep 3.
3
Single-Particle Cryo-EM to Investigate Nonenveloped Virus-Like Particles.
Methods Mol Biol. 2025;2940:371-378. doi: 10.1007/978-1-0716-4615-1_32.
4
Structure of the scaffolding protein and portal within the bacteriophage P22 procapsid provides insights into the self-assembly process.
PLoS Biol. 2025 Apr 17;23(4):e3003104. doi: 10.1371/journal.pbio.3003104. eCollection 2025 Apr.
5
6
Phi29 assembly intermediates reveal how scaffold interactions with capsid protein drive capsid construction and maturation.
Sci Adv. 2025 Mar 21;11(12):eadk8779. doi: 10.1126/sciadv.adk8779. Epub 2025 Mar 19.
7
structures of the contractile nanomachine myophage Mu in both its extended and contracted states.
J Virol. 2025 Mar 18;99(3):e0205624. doi: 10.1128/jvi.02056-24. Epub 2025 Feb 24.
8
Conformational changes in and translocation of small proteins: insights into the ejection mechanism of podophages.
J Virol. 2025 Jan 31;99(1):e0124924. doi: 10.1128/jvi.01249-24. Epub 2024 Dec 20.
9
Cryo-Electron Microscopy in the Study of Antiviral Innate Immunity.
Methods Mol Biol. 2025;2854:177-188. doi: 10.1007/978-1-0716-4108-8_18.
10
Structure and replication of Pseudomonas aeruginosa phage JBD30.
EMBO J. 2024 Oct;43(19):4384-4405. doi: 10.1038/s44318-024-00195-1. Epub 2024 Aug 14.

本文引用的文献

1
Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies.
J Struct Biol. 2014 Jul;187(1):1-9. doi: 10.1016/j.jsb.2014.04.006. Epub 2014 Apr 26.
2
Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities.
FEMS Microbiol Rev. 2014 Sep;38(5):916-31. doi: 10.1111/1574-6976.12072. Epub 2014 Mar 27.
3
Architecture of a dsDNA viral capsid in complex with its maturation protease.
Structure. 2014 Feb 4;22(2):230-7. doi: 10.1016/j.str.2013.11.007. Epub 2013 Dec 19.
4
Single particle cryo-electron microscopy and 3-D reconstruction of viruses.
Methods Mol Biol. 2014;1117:401-43. doi: 10.1007/978-1-62703-776-1_19.
6
Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12301-6. doi: 10.1073/pnas.1309947110. Epub 2013 Jul 9.
7
Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10604-9. doi: 10.1073/pnas.1303047110. Epub 2013 Jun 3.
8
Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6811-6. doi: 10.1073/pnas.1215563110. Epub 2013 Apr 11.
9
Prevention of overfitting in cryo-EM structure determination.
Nat Methods. 2012 Sep;9(9):853-4. doi: 10.1038/nmeth.2115.
10
A graph theory method for determination of cryo-EM image focuses.
J Struct Biol. 2012 Nov;180(2):343-51. doi: 10.1016/j.jsb.2012.07.005. Epub 2012 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验