Guo Fei, Liu Zheng, Fang Ping-An, Zhang Qinfen, Wright Elena T, Wu Weimin, Zhang Ci, Vago Frank, Ren Yue, Jakana Joanita, Chiu Wah, Serwer Philip, Jiang Wen
Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907;
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030; and.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4606-14. doi: 10.1073/pnas.1407020111. Epub 2014 Oct 13.
Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.
许多双链DNA病毒首先利用依赖支架蛋白的过程组装无DNA的原衣壳。然后,原衣壳在包装DNA时经历显著的构象成熟。对于噬菌体T7,我们报告了以下四个单颗粒冷冻电镜三维重建和推导的原子模型:原衣壳(分辨率为4.6 Å)、早期DNA包装中间体(3.5 Å)、后期包装中间体(6.6 Å)和最终感染性噬菌体(3.6 Å)。在原衣壳中,主要衣壳蛋白gp10的N末端在壳的内表面有一个六圈螺旋,其中每个倾斜的gp10六聚体与两个支架蛋白相互作用。随着成熟过程中支架蛋白的退出,gp10 N末端螺旋展开并穿过衣壳壳摆动到外表面。重新折叠的N末端区域有一个发夹结构,与壳扩张过程中形成的口袋形成一种新的非共价、关节状、衣壳间相互作用。这些大的构象变化还导致了一种新的非共价、衣壳内拓扑连接。这两种相互作用通过将DNA包装中间体和噬菌体中的所有五聚体和六聚体衣壳粒联锁,进一步稳定了衣壳。尽管最终的噬菌体壳与无DNA中间体的壳结构几乎相同,但令人惊讶的是,我们发现,尽管有密集包装的DNA基因组产生的内部压力,噬菌体的二十面体面相对于中间体的面略有收缩(约4 Å)。这些结构为理解DNA包装过程中的衣壳成熟过程提供了基础,而这一过程对于大量双链DNA病毒来说至关重要。