Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
School of Agricultural Sciences, Nagoya University, Nagoya, Japan.
J Bacteriol. 2015 Feb 15;197(4):676-87. doi: 10.1128/JB.02276-14. Epub 2014 Oct 13.
Photoautotrophic bacteria have developed mechanisms to maintain K(+) homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K(+) uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K(+) (Kdp). The contributions of each of these K(+) transport systems to cellular K(+) homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K(+) uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K(+) uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K(+) depletion. Correspondingly, Kdp-mediated K(+) uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K(+) required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K(+) concentration under conditions of limited K(+) in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K(+) availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K(+) levels under fluctuating environmental conditions.
光自养细菌已经发展出了在环境中离子浓度变化的情况下维持 K+(钾离子)离子内环境稳态的机制。聚球藻 PCC 6803 含有编码一种特征明确的 Ktr 型 K+(钾离子)摄取转运蛋白(Ktr)和一种特定的 ATP 依赖型 K+(钾离子)转运蛋白(Kdp)的基因。这些 K+(钾离子)转运系统中的每一个对细胞内 K+(钾离子)离子内环境稳态的贡献尚未被明确界定。为了验证 Kdp 的功能,kdp 基因在大肠杆菌中表达,在那里 Kdp 赋予了 K+(钾离子)摄取能力,尽管摄取速率比 Ktr 低。一种基于芯片的微流控装置能够监测到在高渗冲击后单个聚球藻细胞的两相初始体积恢复。在这里,Ktr 在第一个恢复阶段作为主要的 K+(钾离子)摄取系统起作用,而 Kdp 则没有显著贡献。kdp 操纵子在聚球藻中的表达被细胞外 K+(钾离子)耗尽所诱导。相应地,Kdp 介导的 K+(钾离子)摄取支持聚球藻细胞生长,只需要痕量的外部钾离子。这种 kdp 表达的诱导依赖于编码一个假定的双组分系统的两个相邻基因 hik20 和 rre19。kdp 和 ktr 的昼夜节律表达在主观黎明时达到峰值,这可能有助于获取在常规昼夜光合作用代谢中所需的 K+(钾离子)。这些结果表明,Kdp 在自然环境中钾离子有限的情况下有助于维持基础细胞内 K+(钾离子)浓度,而 Ktr 在有更多钾离子可用性的情况下介导快速钾离子运动。通过它们的不同活动,Ktr 和 Kdp 共同协调聚球藻对环境中 K+(钾离子)水平变化的反应。