Bharmoria Pankaj, Gehlot Praveen Singh, Gupta Hariom, Kumar Arvind
Academy of Scientific and Innovative Research (AcSIR) and ‡Salt and Marine Chemical Discipline, §Analytical Discipline & Centralized Instrument Facility, ∥Central Salt and Marine Chemicals Research Institute, Council of Scientific & Industrial Research (CSIR) , G. B. Marg, Bhavnagar-364002, Gujarat, India.
J Phys Chem B. 2014 Nov 6;118(44):12734-42. doi: 10.1021/jp507949h. Epub 2014 Oct 28.
Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.