Suppr超能文献

玻璃形成液体中结构弛豫时间从阿仑尼乌斯温度依赖关系到非阿仑尼乌斯温度依赖关系的转变:连续与不连续情形

Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

作者信息

Popova V A, Surovtsev N V

机构信息

Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russia.

Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russia and Novosibirsk State University, Novosibirsk, 630090, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032308. doi: 10.1103/PhysRevE.90.032308. Epub 2014 Sep 24.

Abstract

The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

摘要

采用去偏振光散射技术研究了三种玻璃形成液体(水杨酸苯酯、邻三联苯和α-甲基吡啶)的α弛豫时间τ(α)(T)的温度依赖性。对T(A)附近的τ(α)(T)进行了详细描述,T(A)是高温下从阿仑尼乌斯定律转变为低温下τ(α)(T)的非阿仑尼乌斯行为的温度。发现这种转变非常尖锐。如果将这种转变描述为从阿仑尼乌斯定律切换到沃格尔-富尔彻-塔曼定律,它发生在大约15 K或更小的温度范围内。大多数已知的τ(α)(T)表达式无法描述这种尖锐的转变。我们的分析表明,这种转变既可以按照受挫限制域理论[D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)]的精神描述为不连续转变,这意味着存在相变,也可以用最近提出的一个唯象表达式[B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)]来描述,其中活化能包含一个与温度呈指数关系的项。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验