Suppr超能文献

具有任意非线性项的非线性狄拉克方程中孤立波的稳定性

Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.

作者信息

Shao Sihong, Quintero Niurka R, Mertens Franz G, Cooper Fred, Khare Avinash, Saxena Avadh

机构信息

LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China.

IMUS and Departamento de Física Aplicada I, E.S.P. Universidad de Sevilla, 41011 Sevilla, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032915. doi: 10.1103/PhysRevE.90.032915. Epub 2014 Sep 17.

Abstract

We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g(2)/κ+1(̅ΨΨ)(κ+1) and with mass m. Using the exact analytic form for rest frame solitary waves of the form Ψ(x,t)=ψ(x)e(-iωt) for arbitrary κ, we discuss the validity of various approaches to understanding stability that were successful for the nonlinear Schrödinger equation. In particular we study the validity of a version of Derrick's theorem and the criterion of Bogolubsky as well as the Vakhitov-Kolokolov criterion, and find that these criteria yield inconsistent results. Therefore, we study the stability by numerical simulations using a recently developed fourth-order operator splitting integration method. For different ranges of κ we map out the stability regimes in ω. We find that all stable nonlinear Dirac solitary waves have a one-hump profile, but not all one-hump waves are stable, while all waves with two humps are unstable. We also find that the time t(c), it takes for the instability to set in, is an exponentially increasing function of ω and t(c) decreases monotonically with increasing κ.

摘要

我们考虑一维加一维情形下具有标量-标量自相互作用(g(2)/κ + 1(̅ΨΨ)(κ + 1))以及质量(m)的非线性狄拉克方程。利用对于任意(κ),形如(Ψ(x,t)=ψ(x)e(-iωt))的静止参考系孤立波的精确解析形式,我们讨论了各种用于理解稳定性的方法对于非线性薛定谔方程成功的有效性。特别地,我们研究了德里克定理的一个版本以及博戈卢布斯基准则和瓦基托夫 - 科洛科洛夫准则的有效性,发现这些准则产生了不一致的结果。因此,我们使用最近开发的四阶算子分裂积分方法通过数值模拟来研究稳定性。对于不同的(κ)范围,我们绘制出(ω)中的稳定区域。我们发现所有稳定的非线性狄拉克孤立波都具有单峰轮廓,但并非所有单峰波都是稳定的,而所有双峰波都是不稳定的。我们还发现不稳定性开始出现所需的时间(t(c))是(ω)的指数增长函数,并且(t(c))随(κ)的增加单调减小。

相似文献

1
Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.具有任意非线性项的非线性狄拉克方程中孤立波的稳定性
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032915. doi: 10.1103/PhysRevE.90.032915. Epub 2014 Sep 17.
2
Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.具有任意非线性的非线性狄拉克方程中的孤立波。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036604. doi: 10.1103/PhysRevE.82.036604. Epub 2010 Sep 14.
3
Forced nonlinear Schrödinger equation with arbitrary nonlinearity.具有任意非线性的强迫非线性薛定谔方程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 2):046607. doi: 10.1103/PhysRevE.85.046607. Epub 2012 Apr 24.
4
Nonlinear Dirac equation solitary waves in external fields.外场中的非线性狄拉克方程孤立波
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 2):046602. doi: 10.1103/PhysRevE.86.046602. Epub 2012 Oct 24.
6
Spatial solitons under competing linear and nonlinear diffractions.竞争线性与非线性衍射下的空间孤子
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026606. doi: 10.1103/PhysRevE.85.026606. Epub 2012 Feb 27.
8
Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains.无界域上带波动算子的非线性薛定谔方程的数值解。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033309. doi: 10.1103/PhysRevE.90.033309. Epub 2014 Sep 23.
10
Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.具有分布系数的广义非线性薛定谔方程的精确解。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056619. doi: 10.1103/PhysRevE.71.056619. Epub 2005 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验