Shao Sihong, Quintero Niurka R, Mertens Franz G, Cooper Fred, Khare Avinash, Saxena Avadh
LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China.
IMUS and Departamento de Física Aplicada I, E.S.P. Universidad de Sevilla, 41011 Sevilla, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032915. doi: 10.1103/PhysRevE.90.032915. Epub 2014 Sep 17.
We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g(2)/κ+1(̅ΨΨ)(κ+1) and with mass m. Using the exact analytic form for rest frame solitary waves of the form Ψ(x,t)=ψ(x)e(-iωt) for arbitrary κ, we discuss the validity of various approaches to understanding stability that were successful for the nonlinear Schrödinger equation. In particular we study the validity of a version of Derrick's theorem and the criterion of Bogolubsky as well as the Vakhitov-Kolokolov criterion, and find that these criteria yield inconsistent results. Therefore, we study the stability by numerical simulations using a recently developed fourth-order operator splitting integration method. For different ranges of κ we map out the stability regimes in ω. We find that all stable nonlinear Dirac solitary waves have a one-hump profile, but not all one-hump waves are stable, while all waves with two humps are unstable. We also find that the time t(c), it takes for the instability to set in, is an exponentially increasing function of ω and t(c) decreases monotonically with increasing κ.
我们考虑一维加一维情形下具有标量-标量自相互作用(g(2)/κ + 1(̅ΨΨ)(κ + 1))以及质量(m)的非线性狄拉克方程。利用对于任意(κ),形如(Ψ(x,t)=ψ(x)e(-iωt))的静止参考系孤立波的精确解析形式,我们讨论了各种用于理解稳定性的方法对于非线性薛定谔方程成功的有效性。特别地,我们研究了德里克定理的一个版本以及博戈卢布斯基准则和瓦基托夫 - 科洛科洛夫准则的有效性,发现这些准则产生了不一致的结果。因此,我们使用最近开发的四阶算子分裂积分方法通过数值模拟来研究稳定性。对于不同的(κ)范围,我们绘制出(ω)中的稳定区域。我们发现所有稳定的非线性狄拉克孤立波都具有单峰轮廓,但并非所有单峰波都是稳定的,而所有双峰波都是不稳定的。我们还发现不稳定性开始出现所需的时间(t(c))是(ω)的指数增长函数,并且(t(c))随(κ)的增加单调减小。