Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.
Appl Microbiol Biotechnol. 2014 Nov;98(22):9351-63. doi: 10.1007/s00253-014-6102-z. Epub 2014 Oct 15.
A novel two-component system (TCS) of DraR-K was previously identified as playing differential roles in the biosynthesis of antibiotics (blue-pigmented type II polyketide actinorhodin (ACT), red-pigmented tripyrrole undecylprodigiosin (RED), and yellow-pigmented type I polyketide (yCPK)) in Streptomyces coelicolor M145 under the conditions of minimal medium (MM) supplemented with a high concentration of different nitrogen sources (e.g., 75 mM glutamine). To assess whether DraR-K has more globalized roles, a genome-wide transcriptomic analysis of the parental strain M145 and a ΔdraR-K mutant under the condition of MM supplemented with 75 mM glutamine was performed using DNA microarray analysis combined with real-time reverse transcriptase PCR (RT-qPCR). The analyses showed that deletion of the draR-K genes led to the differential expression not only of the biosynthetic gene clusters of ACT, RED, and yCPK but also of other five secondary metabolite biosynthetic clusters. In addition, a number of primary metabolism-related genes in the ΔdraR-K mutant, such as ureA/B/C/D/G/F, the pstSCAB operon, and the chb gene, exhibited altered expression, which might enable the organism to balance the C/N/P ratio under the condition of a high concentration of glutamine. We also found that the expression of many developmental genes, including ramR, chpA/D/E, and the whiE gene cluster, was affected by the draR-K deletion. Furthermore, the direct role of DraR-K on the transcription of several genes, including chb and pepA/pepA2, was validated using electrophoretic mobility shift assays (EMSAs). In summary, our transcriptomic analyses revealed that DraR-K plays global regulatory roles in the physiological and morphological differentiation of S. coelicolor.
先前发现一种新型双组份系统(TCS)DraR-K 在链霉菌 M145 合成抗生素(蓝色-Ⅱ型聚酮化合物放线紫红素(ACT)、红色-三吡咯化合物玫红瑞香素(RED)和黄色-Ⅰ型聚酮化合物(yCPK))时发挥不同作用,这是在补充高浓度不同氮源(例如 75mM 谷氨酰胺)的基本培养基(MM)条件下观察到的。为了评估 DraR-K 是否具有更广泛的作用,采用 DNA 微阵列分析与实时逆转录 PCR(RT-qPCR)相结合的方法,对补充 75mM 谷氨酰胺的 MM 条件下的亲本菌株 M145 和 ΔdraR-K 突变株进行了全基因组转录组分析。分析表明,draR-K 基因的缺失不仅导致了 ACT、RED 和 yCPK 生物合成基因簇的差异表达,还导致了其他五个次级代谢生物合成簇的差异表达。此外,ΔdraR-K 突变体中许多与初级代谢相关的基因,如 ureA/B/C/D/G/F、pstSCAB 操纵子和 chb 基因,表现出改变的表达,这可能使生物体能够在高浓度谷氨酰胺条件下平衡 C/N/P 比。我们还发现,许多发育基因的表达,包括 ramR、chpA/D/E 和 whiE 基因簇,受到 draR-K 缺失的影响。此外,使用电泳迁移率变动分析(EMSA)验证了 DraR-K 对 chb 和 pepA/pepA2 等几个基因的转录的直接作用。总之,我们的转录组分析表明,DraR-K 在链霉菌 M145 的生理和形态分化中发挥全局调控作用。