Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Mol Microbiol. 2012 Aug;85(3):535-56. doi: 10.1111/j.1365-2958.2012.08126.x. Epub 2012 Jun 21.
A novel two-component system (TCS) designated as DraR-K (sco3063/sco3062) was identified to be involved in differential regulation of antibiotic biosynthesis in Streptomyces coelicolor. The S. coelicolor mutants with deletion of either or both of draR and draK exhibited significantly reduced actinorhodin (ACT) but increased undecylprodigiosin (RED) production on minimal medium (MM) supplemented separately with high concentration of different nitrogen sources. These mutants also overproduced a yellow-pigmented type I polyketide (yCPK) on MM with glutamate (Glu). It was confirmed that DraR-K activates ACT but represses yCPK production directly through the pathway-specific activator genes actII-ORF4 and kasO, respectively, while its role on RED biosynthesis was independent of pathway-specific activator genes redD/redZ. DNase I footprinting assays revealed that the DNA binding sites for DraR were at -124 to -98 nt and -24 to -1 nt relative to the respective transcription start point of actII-ORF4 and kasO. Comparison of the binding sites allowed the identification of a consensus DraR-binding sequence, 5'-AMAAWYMAKCA-3' (M: A or C; W: A or T; Y: C or T; K: G or T). By genome screening and gel-retardation assay, 11 new targets of DraR were further identified in the genome of S. coelicolor. Functional analysis of these tentative targets revealed the involvement of DraR-K in primary metabolism. DraR-K homologues are widely spread in different streptomycetes. Interestingly, deletion of draR-Ksav (sav_3481/sav_3480, homologue of draR-K) in the industrial model strain S. avermitilis NRRL-8165 led to similar abnormal antibiotic biosynthesis, showing higher avermectin while slightly decreased oligomycin A production, suggesting that DraR-K-mediated regulation system might be conserved in streptomycetes. This study further reveals the complexity of TCS in regulation of antibiotic biosynthesis in Streptomyces.
一个新的双组份系统(TCS)命名为 DraR-K(sco3063/sco3062)被鉴定为参与链霉菌中抗生素生物合成的差异调节。缺失 draR 和 draK 中的一个或两个的链霉菌突变体在补充高浓度不同氮源的最低培养基(MM)上表现出明显减少的放线紫红素(ACT)但增加了十一烷普罗替京(RED)的产生。这些突变体在含有谷氨酸(Glu)的 MM 上也过量产生了一种黄色着色的 I 型聚酮(yCPK)。通过途径特异性激活基因 actII-ORF4 和 kasO,分别证实 DraR-K 直接激活 ACT 但抑制 yCPK 产生,而其在 RED 生物合成中的作用独立于途径特异性激活基因 redD/redZ。DNase I 足迹分析表明,DraR 的 DNA 结合位点位于 actII-ORF4 和 kasO 的转录起始点的-124 至-98 nt 和-24 至-1 nt。结合位点的比较允许鉴定出 DraR 结合序列的共识,5'-AMAAWYMAKCA-3'(M:A 或 C;W:A 或 T;Y:C 或 T;K:G 或 T)。通过基因组筛选和凝胶阻滞试验,在链霉菌基因组中进一步鉴定了 11 个 DraR 的新靶标。这些暂定靶标的功能分析表明 DraR-K 参与了初级代谢。DraR-K 同源物广泛分布于不同的链霉菌中。有趣的是,在工业模型菌株 S. avermitilis NRRL-8165 中缺失 draR-Ksav(sav_3481/sav_3480,draR-K 的同源物)导致类似的异常抗生素生物合成,表现出更高的阿维菌素而略微降低寡霉素 A 的产生,表明 DraR-K 介导的调节系统可能在链霉菌中保守。这项研究进一步揭示了 TCS 在链霉菌抗生素生物合成调节中的复杂性。