Bhaway Sarang M, Kisslinger Kim, Zhang Lihua, Yager Kevin G, Schmitt Andrew L, Mahanthappa Mahesh K, Karim Alamgir, Vogt Bryan D
Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States.
ACS Appl Mater Interfaces. 2014 Nov 12;6(21):19288-98. doi: 10.1021/am505307t. Epub 2014 Oct 30.
Unlike other crystalline metal oxides amenable to templating by the combined assemblies of soft and hard chemistries (CASH) method, vanadium oxide nanostructures templated by poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) triblock copolymers are not preserved upon high temperature calcination in argon. Triconstituent cooperative assembly of a phenolic resin oligomer (resol) and an OBO triblock in a VOCl3 precursor solution enhances the carbon yield and can prevent breakout crystallization of the vanadia during calcination. However, the calcination environment significantly influences the observed mesoporous morphology in these composite thin films. Use of an argon atmosphere in this processing protocol leads to nearly complete loss of carbon-vanadium oxide thin film mesostructure, due to carbothermal reduction of vanadium oxide. This reduction mechanism also explains why the CASH method is not more generally successful for the fabrication of ordered mesoporous vanadia. Carbonization under a nitrogen atmosphere at temperatures up to 800 °C instead enables formation of a block copolymer-templated mesoporous structure, which apparently stems from the formation of a minor fraction of a stabilizing vanadium oxynitride. Thus, judicious selection of the inert gas for template removal is critical for the synthesis of well-defined, mesoporous vanadia-carbon composite films. This resol-assisted assembly method may generally apply to the fabrication of other mesoporous materials, wherein inorganic framework crystallization is problematic due to kinetically competitive carbothermal reduction processes.
与其他适合通过软硬化学结合组装(CASH)方法进行模板化的结晶金属氧化物不同,由聚(环氧乙烷-b-1,4-丁二烯-b-环氧乙烷)(OBO)三嵌段共聚物模板化的氧化钒纳米结构在氩气中高温煅烧后无法保留。酚醛树脂低聚物(甲阶酚醛树脂)和OBO三嵌段在VOCl3前驱体溶液中的三组分协同组装提高了碳产率,并能防止煅烧过程中氧化钒的突破性结晶。然而,煅烧环境对这些复合薄膜中观察到的介孔形态有显著影响。在该工艺方案中使用氩气气氛会导致碳-氧化钒薄膜介观结构几乎完全丧失,这是由于氧化钒的碳热还原。这种还原机制也解释了为什么CASH方法在制备有序介孔氧化钒方面并不普遍成功。在氮气气氛下于高达800°C的温度碳化反而能够形成嵌段共聚物模板化的介孔结构,这显然源于少量稳定的氮氧化钒的形成。因此,明智地选择用于去除模板的惰性气体对于合成定义明确的介孔氧化钒-碳复合薄膜至关重要。这种甲阶酚醛树脂辅助组装方法通常可应用于其他介孔材料的制备,其中由于动力学竞争的碳热还原过程,无机骨架结晶存在问题。