Pélissier Marie-Cécile, Sebban-Kreuzer Corinne, Guerlesquin Françoise, Brannigan James A, Bourne Yves, Vincent Florence
From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France.
the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France, and.
J Biol Chem. 2014 Dec 19;289(51):35215-24. doi: 10.1074/jbc.M114.604272. Epub 2014 Oct 15.
Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys(66) as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. (1)H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys(66) for the epimerization reaction with participation of neighboring Arg(43), Asp(126), and Glu(180) residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases.
致病细菌具有一系列特殊酶,可将宿主细胞中的营养化合物进行转化。必需的N-乙酰甘露糖胺-6-磷酸2-表异构酶(NanE)属于利用三种氨基糖(GlcNAc、ManNAc和唾液酸)的汇聚糖酵解途径。产气荚膜梭菌无配体NanE的晶体结构揭示了一种修饰的磷酸丙糖异构酶(β/α)8桶状结构,其中通过交换C末端螺旋形成稳定的二聚体。通过在晶体状态下保持催化活性,与GlcNAc-6P产物结合的酶的结构确定了活性位点口袋的拓扑结构,并指出不变残基Lys(66)作为推定的单一催化剂,与底物ManNAc-6P形成复合物的催化无活性K66A突变体的结构支持了这一点。基于(1)H NMR的天然NanE和突变变体的时间进程分析表明,Lys(66)在与相邻的Arg(43)、Asp(126)和Glu(180)残基参与的表异构化反应中起关键作用。这些发现揭示了通过烯醇中间体进行C2去质子化/再质子化的单碱基催化机制,并为开发针对这一家族细菌2-表异构酶的新型抗菌剂提供了结构基础。