Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China University of Chinese Academy of Sciences, Beijing, China.
Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
J Virol. 2015 Jan;89(1):249-61. doi: 10.1128/JVI.02085-14. Epub 2014 Oct 15.
The flavivirus NS5 is a natural fusion of a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Analogous to DNA-dependent RNA polymerases, the NS5 polymerase initiates RNA synthesis through a de novo mechanism and then makes a transition to a processive elongation phase. However, whether and how the MTase affects polymerase activities through intramolecular interactions remain elusive. By solving the crystal structure of the Japanese encephalitis virus (JEV) NS5, we recently identified an MTase-RdRP interface containing a set of six hydrophobic residues highly conserved among flaviviruses. To dissect the functional relevance of this interface, we made a series of JEV NS5 constructs with mutations of these hydrophobic residues and/or with the N-terminal first 261 residues and other residues up to the first 303 residues deleted. Compared to the wild-type (WT) NS5, full-length NS5 variants exhibited consistent up- or downregulation of the initiation activities in two types of polymerase assays. Five representative full-length NS5 constructs were then tested in an elongation assay, from which the apparent single-nucleotide incorporation rate constant was estimated. Interestingly, two constructs exhibited different elongation kinetics from the WT NS5, with an effect rather opposite to what was observed at initiation. Moreover, constructs with MTase and/or the linker region (residues 266 to 275) removed still retained polymerase activities, albeit at overall lower levels. However, further removal of the N-terminal extension (residues 276 to 303) abolished regular template-directed synthesis. Together, our data showed that the MTase-RdRP interface is relevant in both polymerase initiation and elongation, likely with different regulation mechanisms in these two major phases of RNA synthesis.
The flavivirus NS5 is very unique in having a methyltransferase (MTase) placed on the immediate N terminus of its RNA-dependent RNA polymerase (RdRP). We recently solved the crystal structure of the full-length NS5, which revealed a conserved interface between MTase and RdRP. Building on this discovery, here we carried out in vitro polymerase assays to address the functional relevance of the interface interactions. By explicitly probing polymerase initiation and elongation activities, we found that perturbation in the MTase-RdRP interface had different impacts on different phases of synthesis, suggesting that the roles and contribution of the interface interactions may change upon phase transitions. By comparing the N-terminal-truncated enzymes with the full-length NS5, we collected data to indicate the indispensability to regular polymerase activities of a region that was functionally unclarified previously. Taken together, we provide biochemical evidence and mechanistic insights for the cross talk between the two enzyme modules of flavivirus NS5.
黄病毒 NS5 是一个甲基转移酶(MTase)和 RNA 依赖性 RNA 聚合酶(RdRP)的天然融合体。与 DNA 依赖性 RNA 聚合酶类似,NS5 聚合酶通过从头机制启动 RNA 合成,然后过渡到连续延伸阶段。然而,MTase 是否以及如何通过分子内相互作用影响聚合酶活性仍不清楚。通过解决日本脑炎病毒(JEV)NS5 的晶体结构,我们最近确定了一个 MTase-RdRP 界面,其中包含一组在黄病毒中高度保守的六个疏水性残基。为了剖析该界面的功能相关性,我们构建了一系列 JEV NS5 突变体,这些突变体改变了这些疏水性残基和/或缺失了 N 端的前 261 个残基以及其他残基至第一个 303 个残基。与野生型(WT)NS5 相比,全长 NS5 变体在两种聚合酶测定中表现出一致的起始活性上调或下调。然后,从这 5 个代表性的全长 NS5 构建体中选择了 5 个在延伸测定中进行测试,从中估计了单个核苷酸掺入的表观速率常数。有趣的是,两个构建体表现出与 WT NS5 不同的延伸动力学,其影响与起始时观察到的相反。此外,缺失 MTase 和/或连接区(残基 266 至 275)的构建体仍然保留聚合酶活性,尽管整体水平较低。然而,进一步去除 N 端延伸(残基 276 至 303)则完全阻止了模板指导的合成。总之,我们的数据表明 MTase-RdRP 界面在 RNA 合成的两个主要阶段的聚合酶起始和延伸中都很重要,可能具有不同的调节机制。
黄病毒 NS5 非常独特,其甲基转移酶(MTase)位于其 RNA 依赖性 RNA 聚合酶(RdRP)的直接 N 端。我们最近解决了全长 NS5 的晶体结构,揭示了 MTase 和 RdRP 之间的一个保守界面。在此发现的基础上,我们进行了体外聚合酶测定,以确定界面相互作用的功能相关性。通过明确探测聚合酶起始和延伸活性,我们发现 MTase-RdRP 界面的扰动对合成的不同阶段有不同的影响,这表明界面相互作用的作用和贡献可能在相转变时发生变化。通过比较 N 端截断的酶与全长 NS5,我们收集的数据表明,以前功能未阐明的区域对于正常聚合酶活性是不可或缺的。总之,我们为黄病毒 NS5 的两个酶模块之间的串扰提供了生化证据和机制见解。