Hui Xiaonan, Ye Taihang, Zheng Shilie, Zhou Jinhai, Chi Hao, Jin Xiaofeng, Zhang Xianmin
Appl Opt. 2014 Oct 1;53(28):6586-90. doi: 10.1364/AO.53.006586.
For a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) distributed sensor system, space-frequency analysis can reduce the false alarm by analyzing the frequency distribution compared with the traditional difference value method. We propose a graphics processing unit (GPU)-based parallel computing method to perform multichannel fast Fourier transform (FFT) and realize the real-time space-frequency analysis. The experiment results show that the time taken by the multichannel FFT decreased considerably based on this GPU parallel computing. The method can be completed with a sensing fiber up to 16 km long and an entry-level GPU. Meanwhile, the GPU can reduce the computing load of the central processing unit from 70% down to less than 20%. We carried out an experiment on a two-point space-frequency analysis, and the results clearly and simultaneously show the vibration point locations and frequency components. The sensor system outputs the real-time space-frequency spectra continuously with a spatial resolution of 16.3 m and frequency resolution of 2.25 Hz.
对于相敏光时域反射仪(ϕ-OTDR)分布式传感系统,与传统差值法相比,空频分析可通过分析频率分布来减少误报。我们提出一种基于图形处理器(GPU)的并行计算方法来执行多通道快速傅里叶变换(FFT)并实现实时空频分析。实验结果表明,基于这种GPU并行计算,多通道FFT所需时间大幅减少。该方法使用长达16 km的传感光纤和入门级GPU即可完成。同时,GPU可将中央处理器的计算负载从70%降低至20%以下。我们进行了两点空频分析实验,结果清晰且同时显示了振动点位置和频率成分。该传感系统以16.3 m的空间分辨率和2.25 Hz的频率分辨率连续输出实时空频谱。