Suppr超能文献

科学出版物排名:非线性的影响

Ranking scientific publications: the effect of nonlinearity.

作者信息

Yao Liyang, Wei Tian, Zeng An, Fan Ying, Di Zengru

机构信息

School of Systems Science, Beijing Normal University, Beijing 100875, PR China.

1] School of Systems Science, Beijing Normal University, Beijing 100875, PR China [2] Department of Physics, University of Fribourg, Fribourg CH1700, Switzerland.

出版信息

Sci Rep. 2014 Oct 17;4:6663. doi: 10.1038/srep06663.

Abstract

Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.

摘要

对科学出版物的重要性进行排名是一个长期存在的挑战。基于网络的分析是评估论文学术影响力的一种自然且常见的方法。虽然论文被引次数已被广泛用作对论文进行排名的指标,但最近一些迭代过程,如著名的PageRank算法,已被应用于引文网络来解决这个问题。在本文中,我们在从不同节点聚合资源时将非线性引入PageRank算法,以进一步增强重要论文的影响力。我们的方法在美国物理学会(APS)期刊的数据上进行了验证。结果表明,非线性在排名有效性以及对恶意操纵的鲁棒性方面提高了PageRank算法的性能。虽然非线性分析基于PageRank算法,但它可以很容易地扩展到其他迭代排名算法,预计会有类似的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82af/4200399/94469375e008/srep06663-f1.jpg

相似文献

1
Ranking scientific publications: the effect of nonlinearity.
Sci Rep. 2014 Oct 17;4:6663. doi: 10.1038/srep06663.
2
The Pagerank-Index: Going beyond Citation Counts in Quantifying Scientific Impact of Researchers.
PLoS One. 2015 Aug 19;10(8):e0134794. doi: 10.1371/journal.pone.0134794. eCollection 2015.
3
Using Citation Context to Improve the Retrieval of Research Article from Cancer Research Journals.
Asian Pac J Cancer Prev. 2019 Mar 26;20(3):951-960. doi: 10.31557/APJCP.2019.20.3.951.
4
PageRank as a method to rank biomedical literature by importance.
Source Code Biol Med. 2015 Dec 9;10:16. doi: 10.1186/s13029-015-0046-2. eCollection 2015.
5
Quantifying the impact of scholarly papers based on higher-order weighted citations.
PLoS One. 2018 Mar 29;13(3):e0193192. doi: 10.1371/journal.pone.0193192. eCollection 2018.
6
Diffusion of scientific credits and the ranking of scientists.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056103. doi: 10.1103/PhysRevE.80.056103. Epub 2009 Nov 11.
7
Ranking nodes in growing networks: When PageRank fails.
Sci Rep. 2015 Nov 10;5:16181. doi: 10.1038/srep16181.
8
Refining dermatology journal impact factors using PageRank.
J Am Acad Dermatol. 2007 Jul;57(1):116-9. doi: 10.1016/j.jaad.2007.03.005. Epub 2007 May 17.
9
PageRank tracker: from ranking to tracking.
IEEE Trans Cybern. 2014 Jun;44(6):882-93. doi: 10.1109/TCYB.2013.2274516. Epub 2013 Aug 15.
10
Identifying Anomalous Citations for Objective Evaluation of Scholarly Article Impact.
PLoS One. 2016 Sep 8;11(9):e0162364. doi: 10.1371/journal.pone.0162364. eCollection 2016.

引用本文的文献

4
Identifying Anomalous Citations for Objective Evaluation of Scholarly Article Impact.
PLoS One. 2016 Sep 8;11(9):e0162364. doi: 10.1371/journal.pone.0162364. eCollection 2016.
5
Genealogical Trees of Scientific Papers.
PLoS One. 2016 Mar 8;11(3):e0150588. doi: 10.1371/journal.pone.0150588. eCollection 2016.
6
Quantifying the consistency of scientific databases.
PLoS One. 2015 May 18;10(5):e0127390. doi: 10.1371/journal.pone.0127390. eCollection 2015.

本文引用的文献

1
Career on the move: geography, stratification, and scientific impact.
Sci Rep. 2014 Apr 24;4:4770. doi: 10.1038/srep04770.
2
Quantifying long-term scientific impact.
Science. 2013 Oct 4;342(6154):127-32. doi: 10.1126/science.1237825.
3
Characterizing scientific production and consumption in physics.
Sci Rep. 2013;3:1640. doi: 10.1038/srep01640.
4
PageRank and rank-reversal dependence on the damping factor.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 2):066104. doi: 10.1103/PhysRevE.86.066104. Epub 2012 Dec 5.
6
A new metrics for countries' fitness and products' complexity.
Sci Rep. 2012;2:723. doi: 10.1038/srep00723. Epub 2012 Oct 10.
7
Removing spurious interactions in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036101. doi: 10.1103/PhysRevE.85.036101. Epub 2012 Mar 5.
8
Rescaling citations of publications in physics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046116. doi: 10.1103/PhysRevE.83.046116. Epub 2011 Apr 22.
9
How citation boosts promote scientific paradigm shifts and nobel prizes.
PLoS One. 2011 May 4;6(5):e18975. doi: 10.1371/journal.pone.0018975.
10
Diffusion of scientific credits and the ranking of scientists.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056103. doi: 10.1103/PhysRevE.80.056103. Epub 2009 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验