Suppr超能文献

声悬浮器中球体振荡的实验研究。

Experimental study of the oscillation of spheres in an acoustic levitator.

作者信息

Andrade Marco A B, Pérez Nicolás, Adamowski Julio C

机构信息

Institute of Physics, University of São Paulo, São Paulo, Brazil.

Centro Universitario de Paysandú, Universidad de La República, Paysandú, Uruguay.

出版信息

J Acoust Soc Am. 2014 Oct;136(4):1518-29. doi: 10.1121/1.4893905.

Abstract

The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.

摘要

通过使用高速摄像机记录悬浮球体的位置随时间的变化,对单轴声悬浮器中固体球体的自发振荡进行了实验研究。通过改变球体密度和声压幅值,系统地研究了轴向和径向的振荡。为了解释实验结果,在分析球体振荡行为时应用了基于弹簧-质量系统的简单模型。该模型需要声压分布的知识,通过使用线性有限元方法(FEM)数值获得。此外,将有限元方法获得的线性声压分布与激光多普勒测振仪测量的结果进行了比较。数值和声压分布的实验结果表明,在低幅值压力下两者吻合良好。当压力幅值增加时,声压分布变为非线性,产生基频的谐波。低压力幅值下球体振荡的实验结果与基于弹簧-质量系统的简单模型预测的结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验