Zehnter Sebastian, Endres Kevin, Kronbichler Martin, Andrade Marco A B, Funke Felix, Ament Christoph
Chair of Control Engineering, University of Augsburg, Augsburg, 86159, Germany.
Chair of High-Performance Scientific Computing, University of Augsburg, Augsburg, 86159, Germany.
Sci Rep. 2025 May 20;15(1):17523. doi: 10.1038/s41598-025-93153-8.
Sound waves can be used for trapping and manipulating objects immersed in liquids or air. However, most acoustic levitation techniques are limited to particles with diameters much smaller than the acoustic wavelength or require time-consuming optimisation-based methods that hinder the dynamic manipulation of objects. Here, we present an approach based on semidefinite programming to manipulate levitated objects in real time. To demonstrate this technique, a phased array consisting of 256 ultrasonic transducers operating at 40 kHz is used for rotating a non-spherical Rayleigh object or to translate Mie spheres along various trajectories. In contrast to previous optimisation-based approaches, the proposed method can determine the emission phases of each transducer in real time, strongly facilitating the implementation of a model-based closed-loop control in future acoustic levitation systems. This is a fundamental step for manipulating levitated objects precisely and at high speeds.
声波可用于捕获和操纵浸没在液体或空气中的物体。然而,大多数声悬浮技术仅限于直径远小于声波波长的颗粒,或者需要基于耗时优化的方法,这阻碍了物体的动态操纵。在此,我们提出一种基于半定规划的方法来实时操纵悬浮物体。为演示该技术,使用了一个由256个工作在40kHz的超声换能器组成的相控阵,用于旋转一个非球形瑞利物体或沿各种轨迹平移米氏球。与先前基于优化的方法相比,所提出的方法可以实时确定每个换能器的发射相位,极大地促进了未来声悬浮系统中基于模型的闭环控制的实现。这是精确且高速操纵悬浮物体的一个基本步骤。