Suppr超能文献

网络基序频率向量揭示了不断演变的代谢网络组织。

Network motif frequency vectors reveal evolving metabolic network organisation.

作者信息

Pearcy Nicole, Crofts Jonathan J, Chuzhanova Nadia

机构信息

School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.

出版信息

Mol Biosyst. 2015 Jan;11(1):77-85. doi: 10.1039/c4mb00430b. Epub 2014 Oct 17.

Abstract

At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

摘要

在系统层面,许多相关生物体可以通过它们的相互作用模式来描述,因此,或许通过网络或图形模型来表征最为合适。特别是代谢网络,它对于许多重要生物过程的正常运作至关重要,因此在过去十年左右的时间里受到了广泛研究。此类研究揭示了一些共同的拓扑特征,比如特征路径长度短、聚类系数大以及层次模块化结构。然而,代谢的进化和功能特性通过这种潜在网络架构体现的程度仍不明确。在本文中,我们采用一种基于低阶网络基序的新型图形嵌入技术,来比较根据多种生物学特征分类的383种细菌物种的代谢网络结构。具体而言,我们引入了一种新的全局显著性得分,它使我们能够量化生物体与其物理环境之间存在的重要进化关系。使用这种新方法,我们证明了诸如生长条件和栖息地变异性等环境因素与网络基序结构之间存在许多显著相关性,这表明生物体的适应性会导致所得代谢网络的复杂性增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验