Suppr超能文献

缺失数据对一项精神分裂症研究结果的影响。

The impact of missing data on the results of a schizophrenia study.

作者信息

Rybin Denis, Doros Gheorghe, Rosenheck Robert, Lew Robert

机构信息

Boston University, Biostatistics, Boston, MA, USA; Boston VA Research Institute, VA Boston Healthcare System, Boston, MA, USA.

出版信息

Pharm Stat. 2015 Jan-Feb;14(1):4-10. doi: 10.1002/pst.1651. Epub 2014 Oct 18.

Abstract

Missing data pose a serious challenge to the integrity of randomized clinical trials, especially of treatments for prolonged illnesses such as schizophrenia, in which long-term impact assessment is of great importance, but the follow-up rates are often no more than 50%. Sensitivity analysis using Bayesian modeling for missing data offers a systematic approach to assessing the sensitivity of the inferences made on the basis of observed data. This paper uses data from an 18-month study of veterans with schizophrenia to demonstrate this approach. Data were obtained from a randomized clinical trial involving 369 patients diagnosed with schizophrenia that compared long-acting injectable risperidone with a psychiatrist's choice of oral treatment. Bayesian analysis utilizing a pattern-mixture modeling approach was used to validate the reported results by detecting bias due to non-random patterns of missing data. The analysis was applied to several outcomes including standard measures of schizophrenia symptoms, quality of life, alcohol use, and global mental status. The original study results for several measures were confirmed against a wide range of patterns of non-random missingness. Robustness of the conclusions was assessed using sensitivity parameters. The missing data in the trial did not likely threaten the validity of previously reported results.

摘要

数据缺失对随机临床试验的完整性构成了严峻挑战,对于诸如精神分裂症等慢性病的治疗尤为如此,在这类疾病中,长期影响评估至关重要,但随访率往往不超过50%。使用贝叶斯模型对缺失数据进行敏感性分析,为评估基于观察数据得出的推断的敏感性提供了一种系统方法。本文利用一项针对患有精神分裂症退伍军人的为期18个月的研究数据来演示这种方法。数据来自一项随机临床试验,该试验涉及369名被诊断为精神分裂症的患者,比较了长效注射用利培酮与精神科医生选择的口服治疗方法。利用模式混合建模方法进行的贝叶斯分析,通过检测由于数据缺失的非随机模式导致的偏差,来验证报告的结果。该分析应用于多个结果,包括精神分裂症症状的标准测量、生活质量、酒精使用和整体精神状态。针对广泛的非随机缺失模式,对几项测量的原始研究结果进行了确认。使用敏感性参数评估结论的稳健性。试验中的数据缺失不太可能威胁到先前报告结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验