Suppr超能文献

AOT/正己烷反胶束萃取大豆蛋白的正反输送过程。

The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein.

机构信息

Institute Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100 China.

Institute Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ; Institute Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, No. 198, Gongyebei Road, Jinan, 250100 China.

出版信息

J Food Sci Technol. 2014 Oct;51(10):2851-6. doi: 10.1007/s13197-012-0801-1. Epub 2012 Aug 24.

Abstract

Soybean protein was taken as a model protein to investigate two aspects of the protein extraction by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles: (1) the forward protein extraction from the solid state, and the effect of pH, AOT concentration, alcohol and water content (W0) on the transfer efficiency; (2) the back-transfer, the capability of the protein to be recovered from the micellar solution. The experimental results led to the conclusion that the highest forward extraction efficiency of soybean protein was reached at AOT concentration 180 mmol l(-1), aqueous pH 7.0, KCl concentration 0.05 mol l(-1), 0.5 % (v/v) alcohol, W0 18. Under these conditions, the forward extraction efficiency of soybean protein achieved 70.1 %. It was noted that the percentage of protein back extraction depended on the salt concentration and pH value. Around 92 % of protein recovery was obtained after back extraction.

摘要

以大豆蛋白为模型蛋白,研究了双(2-乙基己基)磺基琥珀酸钠(AOT)反胶束萃取蛋白质的两个方面:(1)从固态进行正向蛋白质萃取,以及 pH 值、AOT 浓度、醇和水含量(W0)对传递效率的影响;(2)反向转移,即从胶束溶液中回收蛋白质的能力。实验结果表明,在 AOT 浓度 180mmol·l^(-1)、水相 pH 值 7.0、KCl 浓度 0.05mol·l^(-1)、0.5%(v/v)醇、W0 为 18 的条件下,大豆蛋白的正向萃取效率达到 70.1%。值得注意的是,蛋白质的反向萃取百分比取决于盐浓度和 pH 值。经过反向萃取后,可获得约 92%的蛋白质回收率。

相似文献

1
The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein.
J Food Sci Technol. 2014 Oct;51(10):2851-6. doi: 10.1007/s13197-012-0801-1. Epub 2012 Aug 24.
2
Study of the factors affecting the extraction of soybean protein by reverse micelles.
Mol Biol Rep. 2010 Feb;37(2):669-75. doi: 10.1007/s11033-009-9515-5. Epub 2009 Mar 29.
3
Extraction and activity of chymotrypsin using AOT-DOLPA mixed reversed micellar systems.
Biotechnol Prog. 1998 Sep-Oct;14(5):729-34. doi: 10.1021/bp9800790.
4
Recovery and purification of phytase from crude extract using AOT / isooctane reversed micelles.
Biotechnol Rep (Amst). 2020 May 20;26:e00471. doi: 10.1016/j.btre.2020.e00471. eCollection 2020 Jun.
5
Higher order structure of proteins solubilized in AOT reverse micelles.
Colloids Surf B Biointerfaces. 2004 Nov 15;38(3-4):179-85. doi: 10.1016/j.colsurfb.2004.02.020.
6
Solubilizing water involved in protein extraction using reversed micelles.
Biotechnol Bioeng. 1992 Jan 5;39(1):20-6. doi: 10.1002/bit.260390105.
7
Reverse micellar extraction of beta-galactosidase from barley (Hordeum vulgare).
Appl Biochem Biotechnol. 2008 Dec;151(2-3):522-31. doi: 10.1007/s12010-008-8228-x. Epub 2008 May 15.
8
Process optimization for reverse micellar extraction of stem bromelain with a focus on back extraction.
Biotechnol Prog. 2014 Jul-Aug;30(4):845-55. doi: 10.1002/btpr.1900. Epub 2014 Mar 20.

引用本文的文献

1
Isolation, process optimisation and characterisation of the protein from the de-oiled cake flour of .
IET Nanobiotechnol. 2020 Oct;14(8):654-661. doi: 10.1049/iet-nbt.2020.0029.
2
Optimization of AOT reversed micelle forward extraction of 7S globulin subunits from soybean proteins.
J Food Sci Technol. 2018 Dec;55(12):4909-4917. doi: 10.1007/s13197-018-3425-2. Epub 2018 Sep 20.
3
Molecular Features Influencing the Release of Peptides from Amphiphilic Polymeric Reverse Micelles.
Langmuir. 2018 Apr 17;34(15):4595-4602. doi: 10.1021/acs.langmuir.7b04065. Epub 2018 Apr 2.

本文引用的文献

1
Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends.
J Food Sci Technol. 2013 Dec;50(6):1179-85. doi: 10.1007/s13197-011-0451-8. Epub 2011 Jul 15.
2
Reverse micelles in protein separation: the use of silica for the back-transfer process.
Biotechnol Bioeng. 1993 Feb 20;41(4):489-92. doi: 10.1002/bit.260410413.
3
Mechanisms of protein solubilization in reverse micelles.
Biotechnol Bioeng. 1992 Jun 5;40(1):91-102. doi: 10.1002/bit.260400114.
4
Solubilizing water involved in protein extraction using reversed micelles.
Biotechnol Bioeng. 1992 Jan 5;39(1):20-6. doi: 10.1002/bit.260390105.
5
The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal.
Biotechnol Bioeng. 1989 Nov;34(9):1140-6. doi: 10.1002/bit.260340904.
6
Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes.
Bioresour Technol. 2008 Jul;99(11):4896-902. doi: 10.1016/j.biortech.2007.09.038. Epub 2007 Oct 26.
7
Reverse micellar extraction for downstream processing of proteins/enzymes.
Adv Biochem Eng Biotechnol. 2002;75:119-83. doi: 10.1007/3-540-44604-4_5.
9
Measurement of protein using bicinchoninic acid.
Anal Biochem. 1985 Oct;150(1):76-85. doi: 10.1016/0003-2697(85)90442-7.
10
Reverse micelles as hosts for proteins and small molecules.
Biochim Biophys Acta. 1988 Feb 24;947(1):209-46. doi: 10.1016/0304-4157(88)90025-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验