Suppr超能文献

用于轮廓检测的初级视觉皮层的导向场模型。

Director field model of the primary visual cortex for contour detection.

作者信息

Singh Vijay, Tchernookov Martin, Butterfield Rebecca, Nemenman Ilya

机构信息

Department of Physics, Emory University, Atlanta, GA, United States of America.

Department of Biology, Emory University, Atlanta, GA, United States of America.

出版信息

PLoS One. 2014 Oct 17;9(10):e108991. doi: 10.1371/journal.pone.0108991. eCollection 2014.

Abstract

We aim to build the simplest possible model capable of detecting long, noisy contours in a cluttered visual scene. For this, we model the neural dynamics in the primate primary visual cortex in terms of a continuous director field that describes the average rate and the average orientational preference of active neurons at a particular point in the cortex. We then use a linear-nonlinear dynamical model with long range connectivity patterns to enforce long-range statistical context present in the analyzed images. The resulting model has substantially fewer degrees of freedom than traditional models, and yet it can distinguish large contiguous objects from the background clutter by suppressing the clutter and by filling-in occluded elements of object contours. This results in high-precision, high-recall detection of large objects in cluttered scenes. Parenthetically, our model has a direct correspondence with the Landau-de Gennes theory of nematic liquid crystal in two dimensions.

摘要

我们旨在构建一个尽可能简单的模型,该模型能够在杂乱的视觉场景中检测出长的、有噪声的轮廓。为此,我们根据一个连续的指向场对灵长类动物初级视觉皮层中的神经动力学进行建模,该指向场描述了皮层中特定点处活跃神经元的平均发放率和平均方向偏好。然后,我们使用具有长程连接模式的线性 - 非线性动力学模型来强化分析图像中存在的长程统计背景。与传统模型相比,所得模型的自由度大幅减少,然而它能够通过抑制背景杂波并填充物体轮廓中被遮挡的元素,将大的连续物体与背景杂波区分开来。这导致在杂乱场景中对大物体进行高精度、高召回率的检测。顺便提一下,我们的模型与二维向列型液晶的朗道 - 德热纳理论有直接对应关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d226/4201468/9ca9f96ac0f2/pone.0108991.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验