Zheng Qun, Ahlawat Shikha, Schaefer Anneliese, Mahoney Tim, Koushika Sandhya P, Nonet Michael L
Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America.
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
PLoS Genet. 2014 Oct 16;10(10):e1004644. doi: 10.1371/journal.pgen.1004644. eCollection 2014 Oct.
Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.
突触小泡(SVs)的轴突运输是一个由KIF1A/UNC-104介导的过程,对突触的发育和维持至关重要,但人们对SV运输的调控方式知之甚少。利用秀丽隐杆线虫作为体内模型,我们鉴定出SAM-4是一种调节SV运输的新型保守囊泡成分。在sam-4突变体中,SV运输的持续性而非速度降低。sam-4与unc-104货物结合结构域而非运动结构域的突变表现出强烈的遗传相互作用。本研究中鉴定出的unc-104运动结构域的功能获得性突变通过增加SV运输的持续性来抑制sam-4缺陷。遗传分析表明,SAM-4、SYD-2/脂锚定蛋白-α和KIF1A/UNC-104运动蛋白在同一途径中发挥作用以调节SV运输。我们的数据支持一个模型,即SV蛋白SAM-4调节SV运输的持续性。