Suppr超能文献

通过迭代最近邻扩展实现快速准确的哈希。

Fast and accurate hashing via iterative nearest neighbors expansion.

出版信息

IEEE Trans Cybern. 2014 Nov;44(11):2167-77. doi: 10.1109/TCYB.2014.2302018.

Abstract

Recently, the hashing techniques have been widely applied to approximate the nearest neighbor search problem in many real applications. The basic idea of these approaches is to generate binary codes for data points which can preserve the similarity between any two of them. Given a query, instead of performing a linear scan of the entire data base, the hashing method can perform a linear scan of the points whose hamming distance to the query is not greater than rh , where rh is a constant. However, in order to find the true nearest neighbors, both the locating time and the linear scan time are proportional to O(∑i=0(rh)(c || i)) ( c is the code length), which increase exponentially as rh increases. To address this limitation, we propose a novel algorithm named iterative expanding hashing in this paper, which builds an auxiliary index based on an offline constructed nearest neighbor table to avoid large rh . This auxiliary index can be easily combined with all the traditional hashing methods. Extensive experimental results over various real large-scale datasets demonstrate the superiority of the proposed approach.

摘要

最近,哈希技术已经在许多实际应用中被广泛应用于近似最近邻搜索问题。这些方法的基本思想是为数据点生成二进制代码,这些代码可以保留它们之间的相似性。给定一个查询,哈希方法不是对整个数据库进行线性扫描,而是可以对汉明距离不大于 rh 的点进行线性扫描,其中 rh 是一个常数。然而,为了找到真正的最近邻,定位时间和线性扫描时间都与 O(∑i=0(rh)(c || i))(c 是代码长度)成比例,随着 rh 的增加呈指数增长。为了解决这个限制,我们在本文中提出了一种名为迭代扩展哈希的新算法,它基于离线构建的最近邻表构建辅助索引,以避免 rh 过大。这个辅助索引可以很容易地与所有传统的哈希方法结合使用。在各种真实的大规模数据集上的广泛实验结果表明了该方法的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验