Gan Li-Yong, Zhang Qingyun, Zhao Yu-Jun, Cheng Yingchun, Schwingenschlögl Udo
PSE Division, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia.
Department of Physics, South China University of Technology, Guangzhou 510640, People's Republic of China.
Sci Rep. 2014 Oct 21;4:6691. doi: 10.1038/srep06691.
A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo(1-x)W(x)X2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo(1-x)W(x)S2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.
结合密度泛函理论、经验模型和蒙特卡罗模拟,以阐明二维半导体过渡金属二硫属化物合金Mo(1-x)W(x)X2(X = S、Se和Te)中原子分布随W浓度和温度的演变情况。发现了随机相和有序相,并阐明了相变的起源。虽然经验模型预测在x = 1/3和2/3时存在有序合金,但蒙特卡罗模拟表明,由于Mo-X-W相对于Mo-X-Mo和W-X-W相互作用具有较小的能量优势,它们仅在低温下存在,这解释了随机合金Mo(1-x)W(x)S2的实验观察结果。负的形成能表明具有高混溶性。通过改变W浓度来调节带边和带隙,从而产生了广泛的应用。