Suppr超能文献

视网膜显微手术中通过在线学习进行器械跟踪

Instrument tracking via online learning in retinal microsurgery.

作者信息

Li Yeqing, Chen Chen, Huang Xiaolei, Huang Junzhou

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 1):464-71. doi: 10.1007/978-3-319-10404-1_58.

Abstract

Robust visual tracking of instruments is an important task in retinal microsurgery. In this context, the instruments are subject to a large variety of appearance changes due to illumination and other changes during a procedure, which makes the task very challenging. Most existing methods require collecting a sufficient amount of labelled data and yet perform poorly in handling appearance changes that are unseen in training data. To address these problems, we propose a new approach for robust instrument tracking. Specifically, we adopt an online learning technique that collects appearance samples of instruments on the fly and gradually learns a target-specific detector. Online learning enables the detector to reinforce its model and become more robust over time. The performance of the proposed method has been evaluated on a fully annotated dataset of retinal instruments in in-vivo retinal microsurgery and on a laparoscopy image sequence. In all experimental results, our proposed tracking approach shows superior performance compared to several other state-of-the-art approaches.

摘要

在视网膜显微手术中,对器械进行稳健的视觉跟踪是一项重要任务。在此背景下,在手术过程中,由于光照和其他变化,器械会出现各种各样的外观变化,这使得该任务极具挑战性。大多数现有方法需要收集足够数量的标注数据,但在处理训练数据中未出现的外观变化时表现不佳。为了解决这些问题,我们提出了一种用于稳健器械跟踪的新方法。具体而言,我们采用一种在线学习技术,该技术可以即时收集器械的外观样本,并逐步学习特定目标的检测器。在线学习使检测器能够强化其模型,并随着时间的推移变得更加稳健。我们所提出方法的性能已在一个经过完全标注的体内视网膜显微手术中视网膜器械数据集以及一个腹腔镜图像序列上进行了评估。在所有实验结果中,我们提出的跟踪方法与其他几种最先进的方法相比表现出了卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验