Moolan-Feroze Oliver, Mirmehdi Majid, Hamilton Mark, Bucciarelli-Ducci Chiara
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):682-9. doi: 10.1007/978-3-319-10404-1_85.
Accurate automated segmentation of the right ventricle is difficult due in part to the large shape variation found between patients. We explore the ability of manifold learning based shape models to represent the complexity of shape variation found within an RV dataset as compared to a typical PCA based model. This is empirically evaluated with the manifold model displaying a greater ability to represent complex shapes. Furthermore, we present a combined manifold shape model and Markov Random Field Segmentation framework. The novelty of this method is the iterative generation of targeted shape priors from the manifold using image information and a current estimate of the segmentation; a process that can be seen as a traversal across the manifold. We apply our method to the independently evaluated MICCAI 2012 RV Segmentation Challenge data set. Our method performs similarly or better than the state-of-the-art methods.
准确地自动分割右心室存在困难,部分原因在于患者之间存在较大的形状差异。我们探讨了基于流形学习的形状模型相较于典型的基于主成分分析(PCA)的模型,在表示右心室(RV)数据集中发现的形状变化复杂性方面的能力。通过实验评估发现,流形模型在表示复杂形状方面具有更强的能力。此外,我们提出了一种流形形状模型与马尔可夫随机场分割框架相结合的方法。该方法的新颖之处在于利用图像信息和当前的分割估计,从流形中迭代生成目标形状先验;这一过程可视为在流形上的遍历。我们将我们的方法应用于独立评估的2012年医学图像计算与计算机辅助干预国际会议(MICCAI)右心室分割挑战赛数据集。我们的方法表现与当前最先进的方法相当或更优。