Suppr超能文献

结合姿态不变可变形图先验的联合模型-像素分割

Joint model-pixel segmentation with pose-invariant deformable graph-priors.

作者信息

Xiang Bo, Deux Jean-Francois, Rahmouni Alain, Paragios Nikos

机构信息

Center for Visual Computing, Ecole Centrale de Paris, France.

Radiology Department, Henri Mondor Hospital, Créteil, France.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 3):267-74. doi: 10.1007/978-3-642-40760-4_34.

Abstract

This paper proposes a novel framework for image segmentation through a unified model-based and pixel-driven integrated graphical model. Prior knowledge is expressed through the deformation of a discrete model that consists of decomposing the shape of interest into a set of higher order cliques (triplets). Such decomposition allows the introduction of region-driven image statistics as well as pose-invariant (i.e. translation, rotation and scale) constraints whose accumulation introduces global deformation constraints on the model. Regional triangles are associated with pixels labeling which aims to create consistency between the model and the image space. The proposed formulation is pose-invariant, can integrate regional statistics in a natural and efficient manner while being able to produce solutions unobserved during training. The challenging problem of tagged cardiac MR image segmentation is used to demonstrate the performance potentials of the method.

摘要

本文提出了一种通过统一的基于模型和像素驱动的集成图形模型进行图像分割的新颖框架。先验知识通过离散模型的变形来表达,该离散模型包括将感兴趣的形状分解为一组高阶团块(三元组)。这种分解允许引入区域驱动的图像统计信息以及姿势不变(即平移、旋转和缩放)约束,这些约束的累积会在模型上引入全局变形约束。区域三角形与像素标记相关联,其目的是在模型和图像空间之间建立一致性。所提出的公式是姿势不变的,能够以自然且高效的方式整合区域统计信息,同时能够产生训练期间未观察到的解决方案。具有挑战性的标记心脏磁共振图像分割问题被用于证明该方法的性能潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验