Simmen Benjamin, Mátyus Edit, Reiher Markus
ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
Eövtös University, Institute of Chemistry, P.O. Box 32, H-1518, Budapest 112, Hungary.
J Chem Phys. 2014 Oct 21;141(15):154105. doi: 10.1063/1.4897632.
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.
本文介绍了在预玻恩-奥本海默框架下电跃迁偶极矩的计算。在非相对论全波函数的参数化方面,电子和原子核被同等对待,该全波函数被写成由显式相关高斯函数和全局矢量表示构建的基函数的线性组合。在长度和速度表示中,导出了对应于这些基函数的电跃迁偶极矩的积分。计算在实验室固定的笛卡尔坐标系中进行,不依赖于将质心与平移不变自由度分开的坐标。通过平移不变积分表达式消除了整体运动的影响。在固定核框架下,计算了H2分子两个可归因于X(1)Σ(g)(+)和B(1)Σ(u)(+)电子态最低振转态的振转电子能级之间的电跃迁偶极矩。这是在不依赖玻恩-奥本海默近似的全量子力学处理中对该量的首次评估。