Khan Hafiz Mohammad Rafiqullah, Ibrahimou Boubakari, Saxena Anshul, Gabbidon Kemesha, Abdool-Ghany Faheema, Ramamoorthy Venkataraghavan, Ullah Duff, Stewart Tiffanie Shauna-Jeanne
Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, USA E-mail :
Asian Pac J Cancer Prev. 2014;15(19):8371-6. doi: 10.7314/apjcp.2014.15.19.8371.
The use of statistical methods has become an imperative tool in breast cancer survival data analysis. The purpose of this study was to develop the best statistical probability model using the Bayesian method to predict future survival times for the black non-Hispanic female breast cancer patients diagnosed during 1973- 2009 in the U.S.
We used a stratified random sample of black non-Hispanic female breast cancer patient data from the Surveillance Epidemiology and End RESULTS (SEER) database. Survival analysis was performed using Kaplan-Meier and Cox proportional regression methods. Four advanced types of statistical models, Exponentiated Exponential (EE), Beta Generalized Exponential (BGE), Exponentiated Weibull (EW), and Beta Inverse Weibull (BIW) were utilized for data analysis. The statistical model building criteria, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were used to measure the goodness of fit tests. Furthermore, we used the Bayesian approach to obtain the predictive survival inferences from the best-fit data based on the exponentiated Weibull model.
We identified the highest number of black non-Hispanic female breast cancer patients in Michigan and the lowest in Hawaii. The mean (SD), of age at diagnosis (years) was 58.3 (14.43). The mean (SD), of survival time (months) for black non- Hispanic females was 66.8 (30.20). Non-Hispanic blacks had a significantly increased risk of death compared to Black Hispanics (Hazard ratio: 1.96, 95%CI: 1.51-2.54). Compared to other statistical probability models, we found that the exponentiated Weibull model better fits for the survival times. By making use of the Bayesian method predictive inferences for future survival times were obtained.
These findings will be of great significance in determining appropriate treatment plans and health-care cost allocation. Furthermore, the same approach should contribute to build future predictive models for any health related diseases.
统计方法的应用已成为乳腺癌生存数据分析中不可或缺的工具。本研究的目的是使用贝叶斯方法开发最佳统计概率模型,以预测1973年至2009年期间在美国诊断出的非西班牙裔黑人女性乳腺癌患者的未来生存时间。
我们使用了来自监测、流行病学和最终结果(SEER)数据库的非西班牙裔黑人女性乳腺癌患者数据的分层随机样本。使用Kaplan-Meier和Cox比例回归方法进行生存分析。四种先进的统计模型,即指数指数(EE)、贝塔广义指数(BGE)、指数威布尔(EW)和贝塔逆威布尔(BIW)用于数据分析。统计模型构建标准,即赤池信息准则(AIC)、贝叶斯信息准则(BIC)和偏差信息准则(DIC)用于衡量拟合优度检验。此外,我们使用贝叶斯方法从基于指数威布尔模型的最佳拟合数据中获得预测生存推断。
我们发现密歇根州非西班牙裔黑人女性乳腺癌患者数量最多,而夏威夷州最少。诊断时的平均(标准差)年龄为58.3(14.43)岁。非西班牙裔黑人女性的平均(标准差)生存时间为66.8(30.20)个月。与西班牙裔黑人相比,非西班牙裔黑人的死亡风险显著增加(风险比:1.96,95%置信区间:1.51 - 2.54)。与其他统计概率模型相比,我们发现指数威布尔模型更适合生存时间。通过使用贝叶斯方法获得了未来生存时间的预测推断。
这些发现对于确定合适的治疗方案和医疗保健成本分配具有重要意义。此外,相同的方法应有助于构建任何与健康相关疾病的未来预测模型。