Suppr超能文献

肿瘤坏死因子相关凋亡诱导配体(TRAIL)诱导的细胞凋亡中细胞间变异性的动力学建模解释了部分杀伤现象并预测了可逆性耐药。

Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance.

作者信息

Bertaux François, Stoma Szymon, Drasdo Dirk, Batt Gregory

机构信息

INRIA Paris-Rocquencourt, Le Chesnay, France.

INRIA Paris-Rocquencourt, Le Chesnay, France; Laboratoire Jacques-Louis Lions (LJLL), University of Paris 6 (UPMC) - CNRS (UMR7598), Paris, France.

出版信息

PLoS Comput Biol. 2014 Oct 23;10(10):e1003893. doi: 10.1371/journal.pcbi.1003893. eCollection 2014 Oct.

Abstract

Isogenic cells sensing identical external signals can take markedly different decisions. Such decisions often correlate with pre-existing cell-to-cell differences in protein levels. When not neglected in signal transduction models, these differences are accounted for in a static manner, by assuming randomly distributed initial protein levels. However, this approach ignores the a priori non-trivial interplay between signal transduction and the source of this cell-to-cell variability: temporal fluctuations of protein levels in individual cells, driven by noisy synthesis and degradation. Thus, modeling protein fluctuations, rather than their consequences on the initial population heterogeneity, would set the quantitative analysis of signal transduction on firmer grounds. Adopting this dynamical view on cell-to-cell differences amounts to recast extrinsic variability into intrinsic noise. Here, we propose a generic approach to merge, in a systematic and principled manner, signal transduction models with stochastic protein turnover models. When applied to an established kinetic model of TRAIL-induced apoptosis, our approach markedly increased model prediction capabilities. One obtains a mechanistic explanation of yet-unexplained observations on fractional killing and non-trivial robust predictions of the temporal evolution of cell resistance to TRAIL in HeLa cells. Our results provide an alternative explanation to survival via induction of survival pathways since no TRAIL-induced regulations are needed and suggest that short-lived anti-apoptotic protein Mcl1 exhibit large and rare fluctuations. More generally, our results highlight the importance of accounting for stochastic protein turnover to quantitatively understand signal transduction over extended durations, and imply that fluctuations of short-lived proteins deserve particular attention.

摘要

感知相同外部信号的同基因细胞可能会做出截然不同的决定。这类决定往往与蛋白质水平上预先存在的细胞间差异相关。在信号转导模型中若不忽略这些差异,通常会以静态方式来考虑,即假设初始蛋白质水平是随机分布的。然而,这种方法忽略了信号转导与这种细胞间变异性来源之间先验的重要相互作用:由有噪声的合成和降解驱动的单个细胞中蛋白质水平的时间波动。因此,对蛋白质波动进行建模,而非其对初始群体异质性的影响,将使信号转导的定量分析建立在更坚实的基础上。从这种动态视角看待细胞间差异,相当于将外在变异性重塑为内在噪声。在此,我们提出一种通用方法,以系统且有原则的方式将信号转导模型与随机蛋白质周转模型合并。当应用于已建立的TRAIL诱导凋亡的动力学模型时,我们的方法显著提高了模型预测能力。人们获得了对HeLa细胞中TRAIL诱导凋亡的分数杀伤现象中尚未解释的观察结果的机制性解释,以及对细胞对TRAIL抗性的时间演变的非平凡稳健预测。我们的结果为通过诱导生存途径实现的存活提供了另一种解释,因为不需要TRAIL诱导的调控,并表明短命抗凋亡蛋白Mcl1表现出大且罕见的波动。更普遍地说,我们的结果强调了考虑随机蛋白质周转以定量理解长时间信号转导的重要性,并暗示短命蛋白质的波动值得特别关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8be3/4207462/fb49c3e718a8/pcbi.1003893.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验