Suppr超能文献

儿科脑肿瘤的蛋白质组学和线粒体基因组分析。

Proteomic and Mitochondrial Genomic Analyses of Pediatric Brain Tumors.

机构信息

Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.

Neuroscience Program, Miami Children's Hospital Brain Institute, Miami, FL, 33155, USA.

出版信息

Mol Neurobiol. 2015 Dec;52(3):1341-1363. doi: 10.1007/s12035-014-8930-3. Epub 2014 Oct 25.

Abstract

The molecular mechanism unraveling why a particular type of pediatric brain tumor (pBT) behaves so differently from child to child or genetic/epigenetic changes in the mitochondrial genome vary from tumor to tumor is not clearly understood. Despite the identification of mitochondrial DNA (mtDNA) mutations in different types of pBT, the contribution of mitochondrial dysfunction-related genes or proteins that are selectively up- or down-regulated in pBT of different types has not been comprehensively examined. In the present study, we combined a 2D DIGE approach with protein identification using MALDI-TOF MS and LC-MS/MS, coupled with mtDNA genomics to screen brain samples for discovering changes in protein expression, and mtDNA sequence variation and mtDNA copy number in the disease states. Two-dimensional gel electrophoresis-based differential proteomic analysis of the brain tumors showed that 116 proteins were found to be up- or down-regulated in brain tumors. Some of the proteins up-regulated in tumors compared to controls were dihydropyrimidinase-like 2; glial fibrillary acidic protein isoform 2; phosphoserine aminotransferase isoform 1; Sirt2 histone deacetylase; and C10orf2 protein, mitochondrial DNA helicase. Proteins down-regulated in brain tumors compared to controls were heat shock protein 90 kDa beta, BiP; guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1, isoform CRA_d; histone H2B.1; neurofilament, light polypeptide 68 kDa; Annexin I; and RAN. These differentially expressed proteins may provide useful information for developing molecular markers of diagnostic or prognostic value. To investigate further the role of mitochondrial dysfunction, we examined the effects of mtDNA copy number, oxidative damage, and mtDNA variants as independent or combined risk factors for the development of pBTs. Bayesian network and mechanistic hierarchical structure Markov Chain Monte Carlo (MCMC) modeling were used to analyze the relationship between these variables. The combined effects of G3196, 9952A, 10006G, 100398G, oxidative mtDNA damages, and mtDNA copy number increased the probability of developing brain tumors in female children by 51 times more when compared to normal incidence of pediatric brain tumors. Comparison of mechanistic structure models also supported the finding that female children who have the wild type allele G3196, variant allele 9952A, variant allele 10006G, variant allele10398A, and high mtDNA copy number had increased probability of developing pediatric brain tumors. Estimation of nuclear genes controlling mitochondrial biogenesis and development of brain, cortical dysplasia, and the effect of the environment using MCMC method showed that these latent variables had a very significant contribution in the development of pediatric brain tumors. Together, these results suggest that mitochondrial genome and tumor proteome are important contributors to brain tumor risk in children, and findings from this study may guide the prospects for targeting mitochondria for therapeutic treatment of childhood brain tumor.

摘要

目前尚不清楚为什么特定类型的小儿脑肿瘤(pBT)在个体间表现如此不同,或者线粒体基因组中的遗传/表观遗传变化在肿瘤间存在差异的分子机制。尽管已经在不同类型的 pBT 中鉴定出线粒体 DNA(mtDNA)突变,但不同类型的 pBT 中线粒体功能障碍相关基因或蛋白的选择性上调或下调的贡献尚未得到全面研究。在本研究中,我们结合了二维 DIGE 方法和 MALDI-TOF MS 和 LC-MS/MS 的蛋白鉴定,结合 mtDNA 基因组学,筛选脑样本以发现疾病状态下蛋白表达和 mtDNA 序列变异和 mtDNA 拷贝数的变化。对脑肿瘤的二维凝胶电泳差异蛋白质组学分析表明,在脑肿瘤中发现有 116 种蛋白被上调或下调。与对照组相比,在肿瘤中上调的一些蛋白是二氢嘧啶酶样 2;神经胶质纤维酸性蛋白同工型 2;磷酸丝氨酸氨基转移酶同工型 1;Sirt2 组蛋白去乙酰化酶;和 C10orf2 蛋白,线粒体 DNA 解旋酶。与对照组相比,在脑肿瘤中下调的蛋白是热休克蛋白 90 kDa beta;BIP;鸟嘌呤核苷酸结合蛋白(G 蛋白),β多肽 2 样 1,CRA_d 同工型;组蛋白 H2B.1;神经丝,轻链 68 kDa;膜联蛋白 I;和 RAN。这些差异表达的蛋白可能为开发具有诊断或预后价值的分子标志物提供有用的信息。为了进一步研究线粒体功能障碍的作用,我们研究了 mtDNA 拷贝数、氧化损伤和 mtDNA 变异作为小儿脑肿瘤发生的独立或组合危险因素的作用。贝叶斯网络和机制层次结构马尔可夫链蒙特卡罗(MCMC)建模用于分析这些变量之间的关系。当与小儿脑肿瘤的正常发生率相比时,G3196、9952A、10006G、100398G、氧化 mtDNA 损伤和 mtDNA 拷贝数的联合作用使女性儿童发生脑肿瘤的可能性增加了 51 倍。对机制结构模型的比较也支持了这样的发现,即具有野生型等位基因 G3196、变异型等位基因 9952A、变异型等位基因 10006G、变异型等位基因 10398A 和高 mtDNA 拷贝数的女性儿童发生小儿脑肿瘤的可能性增加。使用 MCMC 方法估计核基因控制线粒体生物发生和大脑发育、皮质发育不良以及环境的影响表明,这些潜在变量对小儿脑肿瘤的发生有非常显著的贡献。总之,这些结果表明,线粒体基因组和肿瘤蛋白质组是儿童脑肿瘤风险的重要贡献者,本研究的结果可能为针对线粒体进行儿童脑肿瘤的治疗提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验