Alarico Susana, Costa Mafalda, Sousa Marta S, Maranha Ana, Lourenço Eva C, Faria Tiago Q, Ventura M Rita, Empadinhas Nuno
CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.
ITQB - Instituto de Tecnologia Química e Biológica, Oeiras, Portugal.
Sci Rep. 2014 Oct 24;4:6766. doi: 10.1038/srep06766.
Some microorganisms accumulate glucosylglycerate (GG) during growth under nitrogen deprivation. However, the molecular mechanisms underlying the role of GG and the regulation of its levels in the nitrogen stress response are elusive. Since GG is required for biosynthesis of mycobacterial methylglucose lipopolysaccharides (MGLP) we examined the molecular mechanisms linking replenishment of assimilable nitrogen to nitrogen-starved M. hassiacum with depletion of GG accumulated during nitrogen deficiency. To probe the involvement of a newly identified glycoside hydrolase in GG depletion, we produced the mycobacterial enzyme recombinantly and confirmed the specific hydrolysis of GG (GG hydrolase, GgH) in vitro. We have also observed a pronounced up-regulation of GgH mRNA in response to the nitrogen shock, which positively correlates with GG depletion in vivo and growth stimulation, implicating GgH in the recovery process. Since GgH orthologs seem to be absent from most slowly-growing mycobacteria including M. tuberculosis, the disclosure of the GgH function allows reconfiguration of the MGLP pathway in rapidly-growing species and accommodation of this possible regulatory step. This new link between GG metabolism, MGLP biosynthesis and recovery from nitrogen stress furthers our knowledge on the mycobacterial strategies to endure a frequent stress faced in some environments and during long-term infection.
一些微生物在氮缺乏条件下生长时会积累葡糖基甘油酸(GG)。然而,GG发挥作用的分子机制以及其在氮胁迫响应中水平调控的机制仍不清楚。由于GG是分枝杆菌甲基葡萄糖脂多糖(MGLP)生物合成所必需的,我们研究了将可同化氮的补充与氮饥饿的哈氏分枝杆菌中GG的消耗联系起来的分子机制,GG是在氮缺乏期间积累的。为了探究一种新鉴定的糖苷水解酶在GG消耗中的作用,我们重组表达了分枝杆菌酶,并在体外证实了其对GG的特异性水解作用(GG水解酶,GgH)。我们还观察到,在氮冲击后GgH mRNA显著上调,这与体内GG的消耗和生长刺激呈正相关,表明GgH参与了恢复过程。由于包括结核分枝杆菌在内的大多数生长缓慢的分枝杆菌似乎不存在GgH直系同源物,GgH功能的揭示使得快速生长的分枝杆菌物种中的MGLP途径得以重新构建,并适应这一可能的调控步骤。GG代谢、MGLP生物合成与从氮胁迫中恢复之间的这种新联系,进一步加深了我们对分枝杆菌在某些环境和长期感染中经常面临的胁迫下生存策略的认识。