Suppr超能文献

哈西阿克分枝杆菌从氮饥饿状态恢复时,一种新型葡糖基甘油酸水解酶上调,且积累的葡糖基甘油酸减少。

Mycobacterium hassiacum recovers from nitrogen starvation with up-regulation of a novel glucosylglycerate hydrolase and depletion of the accumulated glucosylglycerate.

作者信息

Alarico Susana, Costa Mafalda, Sousa Marta S, Maranha Ana, Lourenço Eva C, Faria Tiago Q, Ventura M Rita, Empadinhas Nuno

机构信息

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.

ITQB - Instituto de Tecnologia Química e Biológica, Oeiras, Portugal.

出版信息

Sci Rep. 2014 Oct 24;4:6766. doi: 10.1038/srep06766.

Abstract

Some microorganisms accumulate glucosylglycerate (GG) during growth under nitrogen deprivation. However, the molecular mechanisms underlying the role of GG and the regulation of its levels in the nitrogen stress response are elusive. Since GG is required for biosynthesis of mycobacterial methylglucose lipopolysaccharides (MGLP) we examined the molecular mechanisms linking replenishment of assimilable nitrogen to nitrogen-starved M. hassiacum with depletion of GG accumulated during nitrogen deficiency. To probe the involvement of a newly identified glycoside hydrolase in GG depletion, we produced the mycobacterial enzyme recombinantly and confirmed the specific hydrolysis of GG (GG hydrolase, GgH) in vitro. We have also observed a pronounced up-regulation of GgH mRNA in response to the nitrogen shock, which positively correlates with GG depletion in vivo and growth stimulation, implicating GgH in the recovery process. Since GgH orthologs seem to be absent from most slowly-growing mycobacteria including M. tuberculosis, the disclosure of the GgH function allows reconfiguration of the MGLP pathway in rapidly-growing species and accommodation of this possible regulatory step. This new link between GG metabolism, MGLP biosynthesis and recovery from nitrogen stress furthers our knowledge on the mycobacterial strategies to endure a frequent stress faced in some environments and during long-term infection.

摘要

一些微生物在氮缺乏条件下生长时会积累葡糖基甘油酸(GG)。然而,GG发挥作用的分子机制以及其在氮胁迫响应中水平调控的机制仍不清楚。由于GG是分枝杆菌甲基葡萄糖脂多糖(MGLP)生物合成所必需的,我们研究了将可同化氮的补充与氮饥饿的哈氏分枝杆菌中GG的消耗联系起来的分子机制,GG是在氮缺乏期间积累的。为了探究一种新鉴定的糖苷水解酶在GG消耗中的作用,我们重组表达了分枝杆菌酶,并在体外证实了其对GG的特异性水解作用(GG水解酶,GgH)。我们还观察到,在氮冲击后GgH mRNA显著上调,这与体内GG的消耗和生长刺激呈正相关,表明GgH参与了恢复过程。由于包括结核分枝杆菌在内的大多数生长缓慢的分枝杆菌似乎不存在GgH直系同源物,GgH功能的揭示使得快速生长的分枝杆菌物种中的MGLP途径得以重新构建,并适应这一可能的调控步骤。GG代谢、MGLP生物合成与从氮胁迫中恢复之间的这种新联系,进一步加深了我们对分枝杆菌在某些环境和长期感染中经常面临的胁迫下生存策略的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d3/5381378/bae6752e9ffb/srep06766-f1.jpg

相似文献

3
Glucosylglycerate metabolism, bioversatility and mycobacterial survival.
Glycobiology. 2017 Mar 4;27(3):213-227. doi: 10.1093/glycob/cww132.
4
Production, crystallization and structure determination of a mycobacterial glucosylglycerate hydrolase.
Acta Crystallogr F Struct Biol Commun. 2017 Sep 1;73(Pt 9):536-540. doi: 10.1107/S2053230X17012419.
7
A new bacterial hydrolase specific for the compatible solutes α-D-mannopyranosyl-(1→2)-D-glycerate and α-D-glucopyranosyl-(1→2)-D-glycerate.
Enzyme Microb Technol. 2013 Feb 5;52(2):77-83. doi: 10.1016/j.enzmictec.2012.10.008. Epub 2012 Nov 16.
8
Free glucosylglycerate is a novel marker of nitrogen stress in Mycobacterium smegmatis.
J Proteome Res. 2012 Jul 6;11(7):3888-96. doi: 10.1021/pr300371b. Epub 2012 Jun 11.
10
Single-step pathway for synthesis of glucosylglycerate in Persephonella marina.
J Bacteriol. 2007 Jun;189(11):4014-9. doi: 10.1128/JB.00075-07. Epub 2007 Mar 16.

引用本文的文献

1
sp. nov., a Novel Species Isolated from a Drinking Water Fountain in a Rural Community.
Microorganisms. 2025 May 29;13(6):1259. doi: 10.3390/microorganisms13061259.
2
Bacterial Isolation from Natural Grassland on Nitrogen-Free Agar Yields Many Strains Without Nitrogenase.
Microorganisms. 2025 Jan 6;13(1):96. doi: 10.3390/microorganisms13010096.
3
Emergence of metabolic coupling to the heterotroph promotes dark survival in .
ISME Commun. 2024 Oct 29;4(1):ycae131. doi: 10.1093/ismeco/ycae131. eCollection 2024 Jan.
4
Glucosylglycerol phosphorylase, a potential novel pathway of microbial glucosylglycerol catabolism.
Appl Microbiol Biotechnol. 2024 Feb 16;108(1):214. doi: 10.1007/s00253-024-13035-3.
6
High-Quality Draft Genome Sequences of Rare Nontuberculous Mycobacteria Isolated from Surfaces of a Hospital.
Microbiol Resour Announc. 2019 May 23;8(21):e00496-19. doi: 10.1128/MRA.00496-19.
7
Studies of antimicrobial resistance in rare mycobacteria from a nosocomial environment.
BMC Microbiol. 2019 Mar 19;19(1):62. doi: 10.1186/s12866-019-1428-4.
8
Production, crystallization and structure determination of a mycobacterial glucosylglycerate hydrolase.
Acta Crystallogr F Struct Biol Commun. 2017 Sep 1;73(Pt 9):536-540. doi: 10.1107/S2053230X17012419.
9
Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute Metabolism.
Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01434-17. Print 2017 Oct 1.

本文引用的文献

1
Mechanism of dephosphorylation of glucosyl-3-phosphoglycerate by a histidine phosphatase.
J Biol Chem. 2014 Aug 1;289(31):21242-51. doi: 10.1074/jbc.M114.569913. Epub 2014 Jun 9.
2
The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies.
Microbiology (Reading). 2014 Aug;160(Pt 8):1547-1570. doi: 10.1099/mic.0.075895-0. Epub 2014 May 23.
4
The global nitrogen cycle in the twenty-first century.
Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130164. doi: 10.1098/rstb.2013.0164. Print 2013 Jul 5.
6
Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia.
FEMS Microbiol Lett. 2013 May;342(2):179-86. doi: 10.1111/1574-6968.12116. Epub 2013 Mar 28.
7
A new bacterial hydrolase specific for the compatible solutes α-D-mannopyranosyl-(1→2)-D-glycerate and α-D-glucopyranosyl-(1→2)-D-glycerate.
Enzyme Microb Technol. 2013 Feb 5;52(2):77-83. doi: 10.1016/j.enzmictec.2012.10.008. Epub 2012 Nov 16.
9
Non-tuberculous mycobacterial PD peritonitis in Australia.
Int Urol Nephrol. 2013 Oct;45(5):1423-8. doi: 10.1007/s11255-012-0328-4. Epub 2012 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验