Suppr超能文献

葡糖基甘油酸磷酸化酶,一种参与相容性溶质代谢的具有新特异性的酶。

Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute Metabolism.

作者信息

Franceus Jorick, Pinel Denise, Desmet Tom

机构信息

Centre for Synthetic Biology, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium.

Centre for Synthetic Biology, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium

出版信息

Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01434-17. Print 2017 Oct 1.

Abstract

Family GH13_18 of the carbohydrate-active enzyme database consists of retaining glycoside phosphorylases that have attracted interest with their potential for synthesizing valuable α-sugars and glucosides. Sucrose phosphorylase was believed to be the only enzyme with specificity in this subfamily for many years, but recent work revealed an enzyme with a different function and hinted at an even broader diversity that is left to discover. In this study, a putative sucrose phosphorylase from that resides in a previously unexplored branch of the family's phylogenetic tree was expressed and characterized. Unexpectedly, no activity on sucrose was observed. Guided by a thorough inspection of the genomic landscape surrounding other genes in the branch, the enzyme was found to be a glucosylglycerate phosphorylase, with a specificity never before reported. Homology modeling, docking, and mutagenesis pinpointed particular acceptor site residues (Asn275 and Glu383) involved in the binding of glycerate. Various organisms known to synthesize and accumulate glucosylglycerate as a compatible solute possess a putative glucosylglycerate phosphorylase gene, indicating that the phosphorylase may be a regulator of its intracellular levels. Moreover, homologs of this novel enzyme appear to be distributed among diverse bacterial phyla, a finding which suggests that many more organisms may be capable of assimilating or synthesizing glucosylglycerate than previously assumed. Glycoside phosphorylases are an intriguing group of carbohydrate-active enzymes that have been used for the synthesis of various economically appealing glycosides and sugars, and they are frequently subjected to enzyme engineering to further expand their application potential. The novel specificity discovered in this work broadens the diversity of these phosphorylases and opens up new possibilities for the efficient production of glucosylglycerate, which is a remarkably potent and versatile stabilizer for protein formulations. Finally, it is a new piece of the puzzle of glucosylglycerate metabolism, being the only known enzyme capable of catalyzing the breakdown of glucosylglycerate in numerous bacterial phyla.

摘要

碳水化合物活性酶数据库中的GH13_18家族包含保留型糖苷磷酸化酶,这些酶因其合成有价值的α-糖和糖苷的潜力而备受关注。多年来,蔗糖磷酸化酶一直被认为是该亚家族中唯一具有特异性的酶,但最近的研究发现了一种具有不同功能的酶,并暗示还有更广泛的多样性有待发现。在本研究中,表达并表征了一种来自该家族系统发育树中一个先前未被探索分支的假定蔗糖磷酸化酶。出乎意料的是,未观察到该酶对蔗糖有活性。通过对该分支中其他基因周围基因组环境的全面检查,发现该酶是一种葡糖基甘油酸磷酸化酶,具有前所未有的特异性。同源建模、对接和诱变确定了参与甘油酸结合的特定受体位点残基(Asn275和Glu383)。已知合成并积累葡糖基甘油酸作为相容性溶质的各种生物体都拥有一个假定的葡糖基甘油酸磷酸化酶基因,这表明该磷酸化酶可能是其细胞内水平的调节剂。此外,这种新型酶的同源物似乎分布在不同的细菌门类中,这一发现表明能够同化或合成葡糖基甘油酸的生物体可能比之前认为的更多。糖苷磷酸化酶是一类有趣的碳水化合物活性酶,已被用于合成各种具有经济吸引力的糖苷和糖,并且经常进行酶工程改造以进一步扩大其应用潜力。本研究中发现的新型特异性拓宽了这些磷酸化酶的多样性,并为高效生产葡糖基甘油酸开辟了新的可能性,葡糖基甘油酸是一种非常有效的蛋白质制剂通用稳定剂。最后,它为葡糖基甘油酸代谢难题增添了新的一块,是众多细菌门类中唯一已知能够催化葡糖基甘油酸分解的酶。

相似文献

1
Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute Metabolism.
Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01434-17. Print 2017 Oct 1.
3
Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase.
Appl Microbiol Biotechnol. 2018 Apr;102(7):3183-3191. doi: 10.1007/s00253-018-8856-1. Epub 2018 Feb 22.
4
High-yield synthesis of 2-O-α-D-glucosyl-D-glycerate by a bifunctional glycoside phosphorylase.
Appl Microbiol Biotechnol. 2024 Dec;108(1):55. doi: 10.1007/s00253-023-12970-x. Epub 2024 Jan 4.
5
Single-step pathway for synthesis of glucosylglycerate in Persephonella marina.
J Bacteriol. 2007 Jun;189(11):4014-9. doi: 10.1128/JB.00075-07. Epub 2007 Mar 16.
6
A new bacterial hydrolase specific for the compatible solutes α-D-mannopyranosyl-(1→2)-D-glycerate and α-D-glucopyranosyl-(1→2)-D-glycerate.
Enzyme Microb Technol. 2013 Feb 5;52(2):77-83. doi: 10.1016/j.enzmictec.2012.10.008. Epub 2012 Nov 16.
9
The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.
Appl Microbiol Biotechnol. 2014 Aug;98(16):7027-37. doi: 10.1007/s00253-014-5621-y. Epub 2014 Mar 6.

引用本文的文献

1
Emergence of metabolic coupling to the heterotroph promotes dark survival in .
ISME Commun. 2024 Oct 29;4(1):ycae131. doi: 10.1093/ismeco/ycae131. eCollection 2024 Jan.
2
Strategies for the synthesis of the osmolyte glucosylglycerate and its precursor glycerate.
Appl Microbiol Biotechnol. 2024 Apr 12;108(1):297. doi: 10.1007/s00253-024-13139-w.
3
Glucosylglycerol phosphorylase, a potential novel pathway of microbial glucosylglycerol catabolism.
Appl Microbiol Biotechnol. 2024 Feb 16;108(1):214. doi: 10.1007/s00253-024-13035-3.
4
High-yield synthesis of 2-O-α-D-glucosyl-D-glycerate by a bifunctional glycoside phosphorylase.
Appl Microbiol Biotechnol. 2024 Dec;108(1):55. doi: 10.1007/s00253-023-12970-x. Epub 2024 Jan 4.
6
Metabolomic and cultivation insights into the tolerance of the spacecraft-associated toward Kleenol 30, a cleanroom floor detergent.
Front Microbiol. 2023 Mar 6;14:1090740. doi: 10.3389/fmicb.2023.1090740. eCollection 2023.
7
Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis.
JACS Au. 2022 Dec 7;3(1):47-61. doi: 10.1021/jacsau.2c00529. eCollection 2023 Jan 23.
8
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases.
Int J Mol Sci. 2022 Mar 11;23(6):3043. doi: 10.3390/ijms23063043.

本文引用的文献

1
Extensive Turnover of Compatible Solutes in Cyanobacteria Revealed by Deuterium Oxide (DO) Stable Isotope Probing.
ACS Chem Biol. 2017 Mar 17;12(3):674-681. doi: 10.1021/acschembio.6b00890. Epub 2017 Jan 18.
2
Glucosylglycerate metabolism, bioversatility and mycobacterial survival.
Glycobiology. 2017 Mar 4;27(3):213-227. doi: 10.1093/glycob/cww132.
4
Creating Space for Large Acceptors: Rational Biocatalyst Design for Resveratrol Glycosylation in an Aqueous System.
Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9289-92. doi: 10.1002/anie.201503605. Epub 2015 Jun 12.
5
Glycoside phosphorylases: structure, catalytic properties and biotechnological potential.
Biotechnol Adv. 2015 Mar-Apr;33(2):261-76. doi: 10.1016/j.biotechadv.2015.02.002. Epub 2015 Feb 14.
7
The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.
Appl Microbiol Biotechnol. 2014 Aug;98(16):7027-37. doi: 10.1007/s00253-014-5621-y. Epub 2014 Mar 6.
8
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
9
DOOR 2.0: presenting operons and their functions through dynamic and integrated views.
Nucleic Acids Res. 2014 Jan;42(Database issue):D654-9. doi: 10.1093/nar/gkt1048. Epub 2013 Nov 7.
10
A new bacterial hydrolase specific for the compatible solutes α-D-mannopyranosyl-(1→2)-D-glycerate and α-D-glucopyranosyl-(1→2)-D-glycerate.
Enzyme Microb Technol. 2013 Feb 5;52(2):77-83. doi: 10.1016/j.enzmictec.2012.10.008. Epub 2012 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验