Suppr超能文献

描述和预测导致太阳爆发的磁场环境。

Characterizing and predicting the magnetic environment leading to solar eruptions.

机构信息

Centre de Physique Théorique, Ecole Polytechnique, CNRS, F-91128 Palaiseau Cedex, France.

AIM, Unité Mixte de Recherche CEA, CNRS, Université Paris VII, UMR 7158, Centre d'Etudes de Saclay, F-91191 Gif sur Yvette Cedex, France.

出版信息

Nature. 2014 Oct 23;514(7523):465-9. doi: 10.1038/nature13815.

Abstract

The physical mechanism responsible for coronal mass ejections has been uncertain for many years, in large part because of the difficulty of knowing the three-dimensional magnetic field in the low corona. Two possible models have emerged. In the first, a twisted flux rope moves out of equilibrium or becomes unstable, and the subsequent reconnection then powers the ejection. In the second, a new flux rope forms as a result of the reconnection of the magnetic lines of an arcade (a group of arches of field lines) during the eruption itself. Observational support for both mechanisms has been claimed. Here we report modelling which demonstrates that twisted flux ropes lead to the ejection, in support of the first model. After seeing a coronal mass ejection, we use the observed photospheric magnetic field in that region from four days earlier as a boundary condition to determine the magnetic field configuration. The field evolves slowly before the eruption, such that it can be treated effectively as a static solution. We find that on the fourth day a flux rope forms and grows (increasing its free energy). This solution then becomes the initial condition as we let the model evolve dynamically under conditions driven by photospheric changes (such as flux cancellation). When the magnetic energy stored in the configuration is too high, no equilibrium is possible and the flux rope is 'squeezed' upwards. The subsequent reconnection drives a mass ejection.

摘要

日冕物质抛射的物理机制多年来一直不确定,主要是因为难以了解低日冕中的三维磁场。两种可能的模型已经出现。在第一种模型中,扭曲的通量绳失去平衡或变得不稳定,随后的重新连接为抛射提供动力。在第二种模型中,由于爆发过程中磁环(一组磁场线的拱形)的重新连接,形成了一个新的通量绳。这两种机制都得到了观测支持。在这里,我们报告了一种模型,该模型表明扭曲的通量绳导致了抛射,支持了第一种模型。在看到日冕物质抛射后,我们使用前四天该区域的观测到的光球磁场作为边界条件来确定磁场配置。在爆发之前,磁场缓慢演化,因此可以有效地将其视为静态解。我们发现,在第四天,一个通量绳形成并生长(增加其自由能)。当我们让模型在由光球变化(如通量抵消)驱动的条件下动态演化时,该解成为初始条件。当配置中存储的磁能过高时,就不可能达到平衡,通量绳就会“被挤压”向上。随后的重新连接会驱动物质抛射。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验