Department of Materials Science, Tohoku University, Sendai 980-8579, Japan.
Green Magnetic Material Research Center, AIST Chubu, 2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya 463-8560, Japan.
Nat Mater. 2015 Jan;14(1):73-8. doi: 10.1038/nmat4117. Epub 2014 Oct 26.
First-order phase transitions are accompanied by a latent heat. Consequently, manipulating them by means of an external field causes a caloric effect. Although transitions from antiferromagnetic to paramagnetic states are not controlled by a magnetic field, a large barocaloric effect is expected when strong cross-correlations between the volume and magnetic order occur. Here we examine how geometric frustration in itinerant antiferromagnetic compounds can enhance the barocaloric effect. We study the thermodynamic behaviour of the frustrated antiferromagnet Mn3GaN, and report an entropy change of 22.3 J kg(-1) K(-1) that is concomitant with a hydrostatic pressure change of 139 MPa. Furthermore, the calculated value of the adiabatic temperature change reaches 5 K by depressurization of 93 MPa. The giant barocaloric effect in Mn3GaN is caused by a frustration-driven enhancement of the ratio of volume change against the pressure coefficient of the Néel temperature. This mechanism for enhancing the barocaloric effect can form the basis for a new class of materials for solid-state refrigerants.
一级相变伴随着潜热。因此,通过外部场来操纵它们会导致热效应。尽管反铁磁到顺磁状态的转变不受磁场控制,但当体积和磁有序之间存在强交叉关联时,预计会出现大的压热效应。在这里,我们研究了巡游反铁磁化合物中的几何各向异性如何增强压热效应。我们研究了具有各向异性的反铁磁体 Mn3GaN 的热力学行为,并报告了伴随 139 MPa 静压变化的 22.3 J kg(-1) K(-1)的熵变化。此外,通过减压 93 MPa,计算出的绝热温度变化值达到 5 K。Mn3GaN 中的巨大压热效应是由各向异性驱动的对尼尔温度压力系数的体积变化比的增强引起的。这种增强压热效应的机制可以为固态制冷剂的新材料提供基础。