Suppr超能文献

用于癌症免疫治疗靶点发现的生物信息学

Bioinformatics for cancer immunotherapy target discovery.

作者信息

Olsen Lars Rønn, Campos Benito, Barnkob Mike Stein, Winther Ole, Brusic Vladimir, Andersen Mads Hald

机构信息

Department of Biology, Bioinformatics Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark,

出版信息

Cancer Immunol Immunother. 2014 Dec;63(12):1235-49. doi: 10.1007/s00262-014-1627-7. Epub 2014 Oct 26.

Abstract

The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors.

摘要

针对癌症的免疫反应机制已得到广泛研究,并且人们已投入巨大努力来利用免疫系统的治疗潜力。在过去20年中,免疫疗法取得了重大进展,但保护性和治疗性癌症免疫疗法的全部潜力尚未实现。现有治疗方法疗效不足可归因于一些生物学和技术问题。在本综述中,我们详细阐述了免疫疗法靶点选择和设计的当前局限性,并回顾了在生物信息学分析流程中简化治疗靶点发现的计算方法。我们描述了针对免疫疗法靶点发现中的三个主要瓶颈的专门生物信息学工具和数据库:潜在抗原性蛋白质的编目、潜在HLA结合物的鉴定以及单表位和多表位策略的表位和共靶点选择。我们提供了应用于著名肿瘤抗原HER2的示例,并提出了生物信息学方法来改善治疗抗性并确保对肿瘤进行有效和持久的控制。

相似文献

1
Bioinformatics for cancer immunotherapy target discovery.用于癌症免疫治疗靶点发现的生物信息学
Cancer Immunol Immunother. 2014 Dec;63(12):1235-49. doi: 10.1007/s00262-014-1627-7. Epub 2014 Oct 26.
3
Bioinformatics for cancer immunology and immunotherapy.癌症免疫学和免疫治疗的生物信息学。
Cancer Immunol Immunother. 2012 Nov;61(11):1885-903. doi: 10.1007/s00262-012-1354-x. Epub 2012 Sep 18.
5
Bioinformatics for Cancer Immunotherapy.癌症免疫治疗中的生物信息学。
Methods Mol Biol. 2020;2120:1-9. doi: 10.1007/978-1-0716-0327-7_1.
10
Informatics for cancer immunotherapy.癌症免疫疗法的信息学。
Ann Oncol. 2017 Dec 1;28(suppl_12):xii56-xii73. doi: 10.1093/annonc/mdx682.

引用本文的文献

本文引用的文献

1
BlockLogo: visualization of peptide and sequence motif conservation.BlockLogo:展示肽和序列模体保守性。
J Immunol Methods. 2013 Dec 31;400-401:37-44. doi: 10.1016/j.jim.2013.08.014. Epub 2013 Aug 31.
7
HLA typing from RNA-Seq sequence reads.从 RNA-Seq 序列读取中进行 HLA 分型。
Genome Med. 2012 Dec 22;4(12):102. doi: 10.1186/gm403. eCollection 2012.
8
Derivation of HLA types from shotgun sequence datasets.从鸟枪法测序数据集推导 HLA 类型。
Genome Med. 2012 Dec 10;4(12):95. doi: 10.1186/gm396. eCollection 2012.
9
The BioGRID interaction database: 2013 update.生物信息学研究协作资源(BioGRID)交互数据库:2013 年更新
Nucleic Acids Res. 2013 Jan;41(Database issue):D816-23. doi: 10.1093/nar/gks1158. Epub 2012 Nov 30.
10
Ensembl 2013.Ensembl 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D48-55. doi: 10.1093/nar/gks1236. Epub 2012 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验