Suppr超能文献

三阴性乳腺癌靶向免疫治疗肿瘤特异性抗原库的大规模计算机模拟鉴定

Large-scale in-silico identification of a tumor-specific antigen pool for targeted immunotherapy in triple-negative breast cancer.

作者信息

Kaufmann Jessica, Wentzensen Nicolas, Brinker Titus J, Grabe Niels

机构信息

Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, University of Heidelberg, Heidelberg, Germany.

Medical Oncology Department, Universitätsklinik Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg, Germany.

出版信息

Oncotarget. 2019 Apr 2;10(26):2515-2529. doi: 10.18632/oncotarget.26808.

Abstract

Since the advent of cetuximab, clinical cancer treatment has evolved from the standard, relatively nonspecific chemo- and radiotherapy with significant cytotoxic side effects towards immunotherapeutic approaches with selective, target-mechanism-based effects. Antibody therapies as the most successful form of cancer immunotherapy led to approved treatments for specific cancer types with increased patient survival. Thus, the identification of tumor antigens with high immunogenicity is in central focus now. In this study, we applied computational methods to comprehensively discover overexpressed molecular targets with high therapeutic relevance for clinical, immunotherapeutic cancer treatment in triple-negative breast cancer (TNBC). By actively modeling potential negative side effects utilizing expression data of 29 different, normal human tissues, we were able to develop a highly-specific coverage of TNBC patients with RNA targets. We identified here more than 400 potential tumor-specific antigens suitable for targeted therapy, including several already identified as potential targets for TNBC and other solid tumors. A specific cocktail of MAGEB4, CT83, TLX3, ACTL8, PRDM13 achieved almost 94% patient coverage in TNBC. Overall, these results show that our approach can identify and prioritize TNBC targets suitable for targeted therapy. Therefore, our method has the potential to lead to new and more effective immunotherapeutic cancer treatment.

摘要

自西妥昔单抗问世以来,临床癌症治疗已从具有显著细胞毒性副作用的标准、相对非特异性的化疗和放疗,发展为具有选择性、基于靶点机制效应的免疫治疗方法。抗体疗法作为癌症免疫治疗最成功的形式,已获批用于特定癌症类型的治疗,提高了患者生存率。因此,高免疫原性肿瘤抗原的鉴定成为当前的核心焦点。在本研究中,我们应用计算方法全面发现了与三阴性乳腺癌(TNBC)临床免疫治疗癌症高度相关的过表达分子靶点。通过利用29种不同正常人体组织的表达数据对潜在负面副作用进行主动建模,我们能够开发出针对TNBC患者的RNA靶点的高度特异性覆盖。我们在此鉴定出400多种适合靶向治疗的潜在肿瘤特异性抗原,其中包括几种已被确定为TNBC和其他实体瘤潜在靶点的抗原。MAGEB4、CT83、TLX3、ACTL8、PRDM13的特定组合在TNBC患者中实现了近94%的覆盖。总体而言,这些结果表明我们的方法可以识别适合靶向治疗的TNBC靶点并对其进行优先级排序。因此,我们的方法有可能带来新的、更有效的癌症免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0ca/6493464/58ec655be595/oncotarget-10-2515-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验