Yue Xu, Mickley Loretta J, Logan Jennifer A
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA ; Now at School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA.
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
Clim Dyn. 2014 Oct 1;43(7-8):1973-1991. doi: 10.1007/s00382-013-2022-3.
We estimate area burned in southern California at mid-century (2046-2065) for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. We develop both regressions and a parameterization to predict area burned in three ecoregions, and apply present-day (1981-2000) and future meteorology from the suite of general circulation models (GCMs) to these fire prediction tools. The regressions account for the impacts of both current and antecedent meteorological factors on wildfire activity and explain 40-46% of the variance in area burned during 1980-2009. The parameterization yields area burned as a function of temperature, precipitation, and relative humidity, and includes the impact of Santa Ana wind and other geographical factors on wildfires. It explains 38% of the variance in area burned over southern California as a whole, and 64% of the variance in southwestern California. The parameterization also captures the seasonality of wildfires in three ecoregions of southern California. Using the regressions, we find that area burned likely doubles in Southwestern California by midcentury, and increases by 35% in the Sierra Nevada and 10% in central western California. The parameterization suggests a likely increase of 40% in area burned in southwestern California and 50% in the Sierra Nevada by midcentury. It also predicts a longer fire season in southwestern California due to warmer and drier conditions on Santa Ana days in November. Our method provides robust estimates of area burned at midcentury, a key metric which can be used to calculate the fire-related effects on air quality, human health, and the associated costs.
我们针对政府间气候变化专门委员会(IPCC)的A1B情景,估算了加利福尼亚州南部在本世纪中叶(2046 - 2065年)的火烧面积。我们开发了回归模型和参数化方法,以预测三个生态区的火烧面积,并将当前(1981 - 2000年)和未来的气象数据(来自通用环流模型(GCMs)套件)应用于这些火灾预测工具。回归模型考虑了当前和前期气象因素对野火活动的影响,解释了1980 - 2009年期间火烧面积变化的40 - 46%。参数化方法得出的火烧面积是温度、降水和相对湿度的函数,并纳入了圣安娜风及其他地理因素对野火的影响。它解释了整个加利福尼亚州南部火烧面积变化的38%,以及加利福尼亚州西南部火烧面积变化的64%。该参数化方法还捕捉到了加利福尼亚州南部三个生态区野火的季节性特征。使用回归模型,我们发现到本世纪中叶,加利福尼亚州西南部的火烧面积可能会翻倍,内华达山脉地区增加35%,加利福尼亚州中西部增加10%。参数化方法表明,到本世纪中叶,加利福尼亚州西南部的火烧面积可能增加40%,内华达山脉地区增加50%。它还预测,由于11月圣安娜风日天气变暖和干燥,加利福尼亚州西南部的火灾季节将延长。我们的方法为本世纪中叶的火烧面积提供了可靠的估计,这是一个关键指标,可用于计算火灾对空气质量、人类健康及相关成本的影响。