Lewallen Eric Alexander, Riester Scott M, Bonin Carolina A, Kremers Hilal Maradit, Dudakovic Amel, Kakar Sanjeev, Cohen Robert C, Westendorf Jennifer J, Lewallen David G, van Wijnen Andre J
1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota.
Tissue Eng Part B Rev. 2015 Apr;21(2):218-30. doi: 10.1089/ten.TEB.2014.0333. Epub 2014 Dec 18.
The biological interface between an orthopedic implant and the surrounding host tissue may have a dramatic effect upon clinical outcome. Desired effects include bony ingrowth (osseointegration), stimulation of osteogenesis (osteoinduction), increased vascularization, and improved mechanical stability. Implant loosening, fibrous encapsulation, corrosion, infection, and inflammation, as well as physical mismatch may have deleterious clinical effects. This is particularly true of implants used in the reconstruction of load-bearing synovial joints such as the knee, hip, and the shoulder. The surfaces of orthopedic implants have evolved from solid-smooth to roughened-coarse and most recently, to porous in an effort to create a three-dimensional architecture for bone apposition and osseointegration. Total joint surgeries are increasingly performed in younger individuals with a longer life expectancy, and therefore, the postimplantation lifespan of devices must increase commensurately. This review discusses advancements in biomaterials science and cell-based therapies that may further improve orthopedic success rates. We focus on material and biological properties of orthopedic implants fabricated from porous metal and highlight some relevant developments in stem-cell research. We posit that the ideal primary and revision orthopedic load-bearing metal implants are highly porous and may be chemically modified to induce stem cell growth and osteogenic differentiation, while minimizing inflammation and infection. We conclude that integration of new biological, chemical, and mechanical methods is likely to yield more effective strategies to control and modify the implant-bone interface and thereby improve long-term clinical outcomes.
骨科植入物与周围宿主组织之间的生物界面可能会对临床结果产生显著影响。期望的效果包括骨长入(骨整合)、骨生成刺激(骨诱导)、血管化增加以及机械稳定性提高。植入物松动、纤维包裹、腐蚀、感染和炎症,以及物理不匹配可能会产生有害的临床影响。对于用于重建诸如膝关节、髋关节和肩关节等负重滑膜关节的植入物来说尤其如此。骨科植入物的表面已经从光滑的实体发展到粗糙的表面,最近又发展到多孔表面,以努力创建一个用于骨附着和骨整合的三维结构。全关节手术越来越多地在预期寿命较长的年轻人中进行,因此,植入物的术后使用寿命必须相应增加。本综述讨论了生物材料科学和基于细胞的疗法的进展,这些进展可能会进一步提高骨科手术的成功率。我们关注由多孔金属制成的骨科植入物的材料和生物学特性,并强调干细胞研究中的一些相关进展。我们认为,理想的初次和翻修骨科负重金属植入物是高度多孔的,并且可以进行化学修饰以诱导干细胞生长和成骨分化,同时将炎症和感染降至最低。我们得出结论,整合新的生物学、化学和机械方法可能会产生更有效的策略来控制和改变植入物与骨的界面,从而改善长期临床结果。