Suppr超能文献

线粒体融合蛋白2依赖的视神经萎缩蛋白1失活裂解将餐后肝脏中线粒体嵴和内质网接触的变化联系起来。

A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver.

作者信息

Sood Aditi, Jeyaraju Danny Vijey, Prudent Julien, Caron Alexandre, Lemieux Philippe, McBride Heidi May, Laplante Mathieu, Tóth Katalin, Pellegrini Luca

机构信息

Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada G1V 0A6; Mitochondria Biology Laboratory, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada G1J 2G3;

Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4;

出版信息

Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16017-22. doi: 10.1073/pnas.1408061111. Epub 2014 Oct 28.

Abstract

Hepatic metabolism requires mitochondria to adapt their bioenergetic and biosynthetic output to accompany the ever-changing anabolic/catabolic state of the liver cell, but the wiring of this process is still largely unknown. Using a postprandial mouse liver model and quantitative cryo-EM analysis, we show that when the hepatic mammalian target of rapamycin complex 1 (mTORC1) signaling pathway disengages, the mitochondria network fragments, cristae density drops by 30%, and mitochondrial respiratory capacity decreases by 20%. Instead, mitochondria-ER contacts (MERCs), which mediate calcium and phospholipid fluxes between these organelles, double in length. These events are associated with the transient expression of two previously unidentified C-terminal fragments (CTFs) of Optic atrophy 1 (Opa1), a mitochondrial GTPase that regulates cristae biogenesis and mitochondria dynamics. Expression of Opa1 CTFs in the intermembrane space has no effect on mitochondria morphology, supporting a model in which they are intermediates of an Opa1 degradation program. Using an in vitro assay, we show that these CTFs indeed originate from the cleavage of Opa1 at two evolutionarily conserved consensus sites that map within critical folds of the GTPase. This processing of Opa1, termed C-cleavage, is mediated by the activity of a cysteine protease whose activity is independent from that of Oma1 and presenilin-associated rhomboid-like (PARL), two known Opa1 regulators. However, C-cleavage requires Mitofusin-2 (Mfn2), a key factor in mitochondria-ER tethering, thereby linking cristae remodeling to MERC assembly. Thus, in vivo, mitochondria adapt to metabolic shifts through the parallel remodeling of the cristae and of the MERCs via a mechanism that degrades Opa1 in an Mfn2-dependent pathway.

摘要

肝脏代谢需要线粒体调整其生物能量和生物合成输出,以适应肝细胞不断变化的合成代谢/分解代谢状态,但这一过程的机制仍 largely 未知。利用餐后小鼠肝脏模型和定量冷冻电镜分析,我们发现当肝脏哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)信号通路失活时,线粒体网络碎片化,嵴密度下降 30%,线粒体呼吸能力降低 20%。相反,介导这些细胞器之间钙和磷脂通量的线粒体-内质网接触(MERC)长度增加一倍。这些事件与视神经萎缩 1(Opa1)的两个先前未鉴定的 C 末端片段(CTF)的瞬时表达有关,Opa1 是一种调节嵴生物发生和线粒体动态的线粒体 GTP 酶。Opa1 CTF 在膜间隙中的表达对线粒体形态没有影响,支持了它们是 Opa1 降解程序中间体的模型。通过体外试验,我们表明这些 CTF 确实起源于 Opa1 在两个进化保守的共有位点的切割,这些位点位于 GTP 酶的关键折叠区内。Opa1 的这种加工,称为 C 切割,由一种半胱氨酸蛋白酶的活性介导,其活性独立于 Oma1 和早老素相关类菱形蛋白酶(PARL),这两种已知的 Opa1 调节剂。然而,C 切割需要线粒体融合蛋白 2(Mfn2),这是线粒体-内质网连接的关键因子,从而将嵴重塑与 MERC 组装联系起来。因此,在体内,线粒体通过一种在 Mfn2 依赖途径中降解 Opa1 的机制,通过嵴和 MERC 的平行重塑来适应代谢变化。

相似文献

1
A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16017-22. doi: 10.1073/pnas.1408061111. Epub 2014 Oct 28.
3
A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis.
Cell Death Differ. 2007 Jul;14(7):1275-84. doi: 10.1038/sj.cdd.4402145. Epub 2007 Apr 20.
4
The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock.
Biochim Biophys Acta. 2012 Oct;1817(10):1886-93. doi: 10.1016/j.bbabio.2012.05.001. Epub 2012 May 8.
5
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission.
J Cell Biol. 2014 Mar 17;204(6):919-29. doi: 10.1083/jcb.201308006. Epub 2014 Mar 10.
6
Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria.
J Cell Biol. 2016 Jan 18;212(2):157-66. doi: 10.1083/jcb.201507022.
7
ATF4-dependent increase in mitochondrial-endoplasmic reticulum tethering following OPA1 deletion in skeletal muscle.
J Cell Physiol. 2024 Apr;239(4):e31204. doi: 10.1002/jcp.31204. Epub 2024 Feb 28.
8
Prohibitin levels regulate OMA1 activity and turnover in neurons.
Cell Death Differ. 2020 Jun;27(6):1896-1906. doi: 10.1038/s41418-019-0469-4. Epub 2019 Dec 9.
9
Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2174-81. doi: 10.1073/pnas.1504880112. Epub 2015 Apr 13.
10
OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury.
Am J Physiol Renal Physiol. 2014 Jun 1;306(11):F1318-26. doi: 10.1152/ajprenal.00036.2014. Epub 2014 Mar 26.

引用本文的文献

1
MCS Ultrastructural Analyses Using Electron Microscopy.
Contact (Thousand Oaks). 2025 Sep 1;8:25152564251372668. doi: 10.1177/25152564251372668. eCollection 2025 Jan-Dec.
2
Unraveling mitochondrial crosstalk: a new frontier in heart failure pathogenesis.
Front Cardiovasc Med. 2025 Jul 15;12:1641023. doi: 10.3389/fcvm.2025.1641023. eCollection 2025.
3
Mitochondria associated membranes in dilated cardiomyopathy: connecting pathogenesis and cellular dysfunction.
Front Cardiovasc Med. 2025 Mar 17;12:1571998. doi: 10.3389/fcvm.2025.1571998. eCollection 2025.
4
The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease.
Biomolecules. 2025 Mar 18;15(3):433. doi: 10.3390/biom15030433.
7
Sex-dependent adaptations in heart mitochondria from transgenic mice overexpressing cytochrome b reductase-3.
Mitochondrion. 2025 Mar;81:102004. doi: 10.1016/j.mito.2025.102004. Epub 2025 Jan 9.
9
Temporal dynamics of membrane contact sites.
Nat Cell Biol. 2024 Nov;26(11):1822-1824. doi: 10.1038/s41556-024-01539-z.

本文引用的文献

1
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission.
J Cell Biol. 2014 Mar 17;204(6):919-29. doi: 10.1083/jcb.201308006. Epub 2014 Mar 10.
2
mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation.
Cell Metab. 2013 Nov 5;18(5):698-711. doi: 10.1016/j.cmet.2013.10.001.
3
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency.
Cell. 2013 Sep 26;155(1):160-71. doi: 10.1016/j.cell.2013.08.032. Epub 2013 Sep 19.
4
A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition.
Cell Metab. 2013 Jul 2;18(1):99-105. doi: 10.1016/j.cmet.2013.06.001.
5
The dynamin GTPase OPA1: more than mitochondria?
Biochim Biophys Acta. 2013 Jan;1833(1):176-83. doi: 10.1016/j.bbamcr.2012.08.004. Epub 2012 Aug 11.
6
mTOR signaling in growth control and disease.
Cell. 2012 Apr 13;149(2):274-93. doi: 10.1016/j.cell.2012.03.017.
8
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5523-8. doi: 10.1073/pnas.1108220109. Epub 2012 Mar 16.
10
mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway.
Cell. 2011 Aug 5;146(3):408-20. doi: 10.1016/j.cell.2011.06.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验