Sood Aditi, Jeyaraju Danny Vijey, Prudent Julien, Caron Alexandre, Lemieux Philippe, McBride Heidi May, Laplante Mathieu, Tóth Katalin, Pellegrini Luca
Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada G1V 0A6; Mitochondria Biology Laboratory, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada G1J 2G3;
Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4;
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16017-22. doi: 10.1073/pnas.1408061111. Epub 2014 Oct 28.
Hepatic metabolism requires mitochondria to adapt their bioenergetic and biosynthetic output to accompany the ever-changing anabolic/catabolic state of the liver cell, but the wiring of this process is still largely unknown. Using a postprandial mouse liver model and quantitative cryo-EM analysis, we show that when the hepatic mammalian target of rapamycin complex 1 (mTORC1) signaling pathway disengages, the mitochondria network fragments, cristae density drops by 30%, and mitochondrial respiratory capacity decreases by 20%. Instead, mitochondria-ER contacts (MERCs), which mediate calcium and phospholipid fluxes between these organelles, double in length. These events are associated with the transient expression of two previously unidentified C-terminal fragments (CTFs) of Optic atrophy 1 (Opa1), a mitochondrial GTPase that regulates cristae biogenesis and mitochondria dynamics. Expression of Opa1 CTFs in the intermembrane space has no effect on mitochondria morphology, supporting a model in which they are intermediates of an Opa1 degradation program. Using an in vitro assay, we show that these CTFs indeed originate from the cleavage of Opa1 at two evolutionarily conserved consensus sites that map within critical folds of the GTPase. This processing of Opa1, termed C-cleavage, is mediated by the activity of a cysteine protease whose activity is independent from that of Oma1 and presenilin-associated rhomboid-like (PARL), two known Opa1 regulators. However, C-cleavage requires Mitofusin-2 (Mfn2), a key factor in mitochondria-ER tethering, thereby linking cristae remodeling to MERC assembly. Thus, in vivo, mitochondria adapt to metabolic shifts through the parallel remodeling of the cristae and of the MERCs via a mechanism that degrades Opa1 in an Mfn2-dependent pathway.
肝脏代谢需要线粒体调整其生物能量和生物合成输出,以适应肝细胞不断变化的合成代谢/分解代谢状态,但这一过程的机制仍 largely 未知。利用餐后小鼠肝脏模型和定量冷冻电镜分析,我们发现当肝脏哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)信号通路失活时,线粒体网络碎片化,嵴密度下降 30%,线粒体呼吸能力降低 20%。相反,介导这些细胞器之间钙和磷脂通量的线粒体-内质网接触(MERC)长度增加一倍。这些事件与视神经萎缩 1(Opa1)的两个先前未鉴定的 C 末端片段(CTF)的瞬时表达有关,Opa1 是一种调节嵴生物发生和线粒体动态的线粒体 GTP 酶。Opa1 CTF 在膜间隙中的表达对线粒体形态没有影响,支持了它们是 Opa1 降解程序中间体的模型。通过体外试验,我们表明这些 CTF 确实起源于 Opa1 在两个进化保守的共有位点的切割,这些位点位于 GTP 酶的关键折叠区内。Opa1 的这种加工,称为 C 切割,由一种半胱氨酸蛋白酶的活性介导,其活性独立于 Oma1 和早老素相关类菱形蛋白酶(PARL),这两种已知的 Opa1 调节剂。然而,C 切割需要线粒体融合蛋白 2(Mfn2),这是线粒体-内质网连接的关键因子,从而将嵴重塑与 MERC 组装联系起来。因此,在体内,线粒体通过一种在 Mfn2 依赖途径中降解 Opa1 的机制,通过嵴和 MERC 的平行重塑来适应代谢变化。