Suppr超能文献

半柔性聚合物或聚合物环在剪切流中的动力学。

Dynamics of a semiflexible polymer or polymer ring in shear flow.

作者信息

Lang Philipp S, Obermayer Benedikt, Frey Erwin

机构信息

Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Schellingstraße 4, D-80333 Munich, Germany.

Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022606. doi: 10.1103/PhysRevE.89.022606. Epub 2014 Feb 27.

Abstract

Polymers exposed to shear flow exhibit a remarkably rich tumbling dynamics. While rigid rods rotate on Jeffery orbits, a flexible polymer stretches and coils up during tumbling. Theoretical results show that in both of these asymptotic regimes the corresponding tumbling frequency f(c) in a linear shear flow of strength γ scales as a power law Wi(2/3) in the Weissenberg number Wi = γτ, where τ is a characteristic time of the polymer's relaxational dynamics. For a flexible polymer these theoretical results are well confirmed by a large body of experimental single molecule studies. However, for the intermediate semiflexible regime, especially relevant for cytoskeletal filaments like F-actin and microtubules, the situation is less clear. While recent experiments on single F-actin filaments are still interpreted within the classical Wi(2/3) scaling law, theoretical results indicated deviations from it. Here we perform extensive Brownian dynamics simulations to explore the tumbling dynamics of semiflexible polymers over a broad range of shear strength and the polymer's persistence length l(p). We find that the Weissenberg number alone does not suffice to fully characterize the tumbling dynamics, and the classical scaling law breaks down. Instead, both the polymer's stiffness and the shear rate are relevant control parameters. Based on our Brownian dynamics simulations we postulate that in the parameter range most relevant for cytoskeletal filaments there is a distinct scaling behavior with f(c) τ* = Wi(3/4)f(c)(x) with Wi = γτ* and the scaling variable x = (l(p)/L)(Wi)(-1/3); here τ* is the time the polymer's center of mass requires to diffuse its own contour length L. Comparing these results with experimental data on F-actin we find that the Wi(3/4) scaling law agrees quantitatively significantly better with the data than the classical Wi(2/3) law. Finally, we extend our results to single ring polymers in shear flow, and find similar results as for linear polymers with slightly different power laws.

摘要

暴露于剪切流的聚合物呈现出极为丰富的翻滚动力学。刚性杆在杰弗里轨道上旋转,而柔性聚合物在翻滚过程中会伸展并盘绕起来。理论结果表明,在这两种渐近状态下,强度为γ的线性剪切流中相应的翻滚频率f(c) 与魏森贝格数Wi = γτ 呈幂律Wi(2/3) 关系,其中τ 是聚合物松弛动力学的特征时间。对于柔性聚合物,这些理论结果得到了大量单分子实验研究的充分证实。然而,对于中间的半柔性状态,尤其是对于像F - 肌动蛋白和微管这样的细胞骨架细丝而言,情况尚不明朗。虽然最近关于单个F - 肌动蛋白细丝的实验仍依据经典的Wi(2/3) 标度律进行解释,但理论结果表明存在偏差。在此,我们进行了广泛的布朗动力学模拟,以探究半柔性聚合物在广泛的剪切强度和聚合物持久长度l(p) 范围内的翻滚动力学。我们发现仅魏森贝格数不足以完全表征翻滚动力学,经典标度律失效。相反,聚合物的刚度和剪切速率都是相关的控制参数。基于我们的布朗动力学模拟,我们推测在与细胞骨架细丝最相关的参数范围内,存在一种独特的标度行为,即f(c) τ* = Wi(3/4)f(c)(x),其中Wi = γτ*,标度变量x = (l(p)/L)(Wi)(-1/3);这里τ* 是聚合物质心扩散其自身轮廓长度L 所需的时间。将这些结果与F - 肌动蛋白的实验数据相比较,我们发现Wi(3/4) 标度律与数据在定量上的吻合程度明显优于经典的Wi(2/3) 定律。最后,我们将结果扩展到剪切流中的单环聚合物,并发现与线性聚合物有相似结果,只是幂律略有不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验