Shrestha Munik, Moore Cristopher
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022805. doi: 10.1103/PhysRevE.89.022805. Epub 2014 Feb 18.
We study a simple model of how social behaviors, like trends and opinions, propagate in networks where individuals adopt the trend when they are informed by threshold T neighbors who are adopters. Using a dynamic message-passing algorithm, we develop a tractable and computationally efficient method that provides complete time evolution of each individual's probability of adopting the trend or of the frequency of adopters and nonadopters in any arbitrary networks. We validate the method by comparing it with Monte Carlo-based agent simulation in real and synthetic networks and provide an exact analytic scheme for large random networks, where simulation results match well. Our approach is general enough to incorporate non-Markovian processes and to include heterogeneous thresholds and thus can be applied to explore rich sets of complex heterogeneous agent-based models.
我们研究了一个简单模型,该模型描述了诸如潮流和观点等社会行为在网络中的传播方式,在这些网络中,个体在被T个作为采纳者的邻居告知时就会采纳该潮流。通过使用动态消息传递算法,我们开发了一种易于处理且计算效率高的方法,该方法能给出任意网络中每个个体采纳潮流的概率或采纳者与未采纳者频率的完整时间演化。我们通过在真实网络和合成网络中将该方法与基于蒙特卡洛的主体模拟进行比较来验证它,并为大型随机网络提供了一个精确的解析方案,模拟结果与该方案匹配良好。我们的方法具有足够的通用性,能够纳入非马尔可夫过程并包含异质阈值,因此可用于探索丰富多样的基于复杂异质主体的模型。