Center for Nonlinear Studies and Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos, NM 87545;
The Nonlinearity and Complexity Research Group, Aston University, Birmingham B4 7ET, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8138-E8146. doi: 10.1073/pnas.1614694114. Epub 2017 Sep 12.
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of "influential spreaders" for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.
有效利用有限的资源来控制网络上的传播过程在各种背景下都具有重要意义,从识别“有影响力的传播者”以最大化信息传播和在监管网络中进行有针对性的干预,到制定传染病和经济系统中金融传染的缓解政策。基于拓扑论点的这些优化任务的解决方案并不完全令人满意;在现实环境中,问题通常具有异质相互作用的特点,并且需要在有限的时间窗口内通过一组受限的可控节点以动态方式进行干预。因此,可用资源的最佳分配是网络拓扑和传播动态相互作用的结果。我们展示了如何将这些问题作为基于可扩展动态消息传递方法的通用分析框架的特定实例来解决,并在各种实际示例上证明了该方法的有效性。