Suppr超能文献

资源的最优部署以最大化传播过程中的影响力。

Optimal deployment of resources for maximizing impact in spreading processes.

机构信息

Center for Nonlinear Studies and Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos, NM 87545;

The Nonlinearity and Complexity Research Group, Aston University, Birmingham B4 7ET, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8138-E8146. doi: 10.1073/pnas.1614694114. Epub 2017 Sep 12.

Abstract

The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of "influential spreaders" for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.

摘要

有效利用有限的资源来控制网络上的传播过程在各种背景下都具有重要意义,从识别“有影响力的传播者”以最大化信息传播和在监管网络中进行有针对性的干预,到制定传染病和经济系统中金融传染的缓解政策。基于拓扑论点的这些优化任务的解决方案并不完全令人满意;在现实环境中,问题通常具有异质相互作用的特点,并且需要在有限的时间窗口内通过一组受限的可控节点以动态方式进行干预。因此,可用资源的最佳分配是网络拓扑和传播动态相互作用的结果。我们展示了如何将这些问题作为基于可扩展动态消息传递方法的通用分析框架的特定实例来解决,并在各种实际示例上证明了该方法的有效性。

相似文献

1
Optimal deployment of resources for maximizing impact in spreading processes.资源的最优部署以最大化传播过程中的影响力。
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8138-E8146. doi: 10.1073/pnas.1614694114. Epub 2017 Sep 12.
6
Influence maximization on temporal networks.时间网络中的影响力最大化
Phys Rev E. 2020 Oct;102(4-1):042307. doi: 10.1103/PhysRevE.102.042307.

引用本文的文献

1
Cascade Size Distributions: Why They Matter and How to Compute Them Efficiently.级联大小分布:为何重要以及如何高效计算它们。
Proc AAAI Conf Artif Intell. 2021;35(8):6840-6849. doi: 10.1609/aaai.v35i8.16844. Epub 2021 May 18.
2
Effects of official information and rumor on resource-epidemic coevolution dynamics.官方信息和谣言对资源-疫情共同演化动态的影响。
J King Saud Univ Comput Inf Sci. 2022 Nov;34(10):9207-9215. doi: 10.1016/j.jksuci.2022.09.003. Epub 2022 Sep 8.

本文引用的文献

1
Optimal trajectories of brain state transitions.脑状态转换的最优轨迹。
Neuroimage. 2017 Mar 1;148:305-317. doi: 10.1016/j.neuroimage.2017.01.003. Epub 2017 Jan 11.
2
Network dismantling.网络拆解
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12368-12373. doi: 10.1073/pnas.1605083113. Epub 2016 Oct 18.
3
Identifying optimal targets of network attack by belief propagation.通过信念传播识别网络攻击的最优目标。
Phys Rev E. 2016 Jul;94(1-1):012305. doi: 10.1103/PhysRevE.94.012305. Epub 2016 Jul 11.
8
Dynamic message-passing equations for models with unidirectional dynamics.具有单向动力学模型的动态消息传递方程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012811. doi: 10.1103/PhysRevE.91.012811. Epub 2015 Jan 13.
9
Message-passing approach for threshold models of behavior in networks.网络中行为阈值模型的消息传递方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022805. doi: 10.1103/PhysRevE.89.022805. Epub 2014 Feb 18.
10
Inferring the origin of an epidemic with a dynamic message-passing algorithm.使用动态消息传递算法推断流行病的起源。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012801. doi: 10.1103/PhysRevE.90.012801. Epub 2014 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验