Suppr超能文献

快慢系统中的随机切换:一种大波动方法。

Stochastic switching in slow-fast systems: a large-fluctuation approach.

作者信息

Heckman Christoffer R, Schwartz Ira B

机构信息

U.S. Naval Research Laboratory, Code 6792 Plasma Physics Division, Nonlinear Dynamical Systems Section Washington, DC 20375, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022919. doi: 10.1103/PhysRevE.89.022919. Epub 2014 Feb 21.

Abstract

In this paper we develop a perturbation method to predict the rate of occurrence of rare events for singularly perturbed stochastic systems using a probability density function approach. In contrast to a stochastic normal form approach, we model rare event occurrences due to large fluctuations probabilistically and employ a WKB ansatz to approximate their rate of occurrence. This results in the generation of a two-point boundary value problem that models the interaction of the state variables and the most likely noise force required to induce a rare event. The resulting equations of motion of describing the phenomenon are shown to be singularly perturbed. Vastly different time scales among the variables are leveraged to reduce the dimension and predict the dynamics on the slow manifold in a deterministic setting. The resulting constrained equations of motion may be used to directly compute an exponent that determines the probability of rare events. To verify the theory, a stochastic damped Duffing oscillator with three equilibrium points (two sinks separated by a saddle) is analyzed. The predicted switching time between states is computed using the optimal path that resides in an expanded phase space. We show that the exponential scaling of the switching rate as a function of system parameters agrees well with numerical simulations. Moreover, the dynamics of the original system and the reduced system via center manifolds are shown to agree in an exponentially scaling sense.

摘要

在本文中,我们开发了一种摄动方法,使用概率密度函数方法来预测奇异摄动随机系统中罕见事件的发生率。与随机范式方法不同,我们对由于大波动导致的罕见事件发生进行概率建模,并采用WKB假设来近似其发生率。这导致生成一个两点边值问题,该问题对状态变量与引发罕见事件所需的最可能噪声力之间的相互作用进行建模。描述该现象的所得运动方程被证明是奇异摄动的。利用变量之间极大不同的时间尺度来降低维度,并在确定性环境中预测慢流形上的动力学。所得的约束运动方程可用于直接计算一个确定罕见事件概率的指数。为了验证该理论,分析了一个具有三个平衡点(由一个鞍点分隔的两个汇点)的随机阻尼杜芬振子。使用位于扩展相空间中的最优路径来计算状态之间的预测切换时间。我们表明,切换率作为系统参数的函数的指数缩放与数值模拟结果吻合良好。此外,原始系统和通过中心流形得到的简化系统的动力学在指数缩放意义上是一致的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验