Suppr超能文献

打鼾的振动信号作为阻塞性睡眠呼吸暂停的一种简单严重程度预测指标。

Vibration signals of snoring as a simple severity predictor for obstructive sleep apnea.

作者信息

Wu Hsien-Tsai, Pan Wen-Yao, Liu An-Bang, Su Mao-Chang, Chen Hong-Ruei, Tsai I-Ting, Lin Meng-Chih, Sun Cheuk-Kwan

机构信息

Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan.

Department of Neurology, Buddhist Tzu Chi General Hospital and Buddhist Tzu Chi University, Hualien, Taiwan.

出版信息

Clin Respir J. 2016 Jul;10(4):440-8. doi: 10.1111/crj.12237. Epub 2014 Nov 26.

Abstract

BACKGROUND AND AIM

Polysomnography (PSG), which involves simultaneous monitoring of various physiological monitors, is the current comprehensive tool for diagnosing obstructive sleep apnea (OSA). We aimed at validating vibrating signals of snoring as a single physiological parameter for screening and evaluating severity of OSA.

METHODS

Totally, 111 subjects from the sleep center of a tertiary referral center were categorized into four groups according to the apnea hypopnea index (AHI) obtained from PSG: simple snoring group (5 > AHI, healthy subjects, n = 11), mild OSA group (5 ≤ AHI < 15, n = 11), moderate OSA group (15 ≤ AHI < 30, n = 30) and severe OSA group (AHI ≥ 30, n = 59). Anthropometric parameters and sleep efficiency of all subjects were compared. Frequencies of amplitude changes of vibrating signals on anterior neck during sleep were analyzed to acquire a snoring burst index (SBI) using a novel algorithm. Data were compared with AHI and index of arterial oxygen saturation (Δ Index).

RESULTS

There were no significant differences in age and sleep efficiency among all groups. Bland-Altman analysis showed better agreement between SBI and AHI (r = 0.906, P < 0.001) than Δ Index and AHI (r = 0.859, P < 0.001). Additionally, receiver operating characteristic (ROC) showed substantially stronger sensitivity and specificity of SBI in distinguishing between patients with moderate and severe OSA compared with Δ Index (sensitivity: 81.4% vs 66.4%; specificity: 96.7% vs 86.7%, for SBI and Δ Index, respectively).

CONCLUSION

SBI may serve as a portable tool for screening patients and assessing OSA severity in a non-hospital setting.

摘要

背景与目的

多导睡眠监测(PSG)可同时监测多种生理指标,是目前诊断阻塞性睡眠呼吸暂停(OSA)的综合工具。我们旨在验证鼾声的振动信号作为筛查和评估OSA严重程度的单一生理参数。

方法

从一家三级转诊中心的睡眠中心选取111名受试者,根据PSG获得的呼吸暂停低通气指数(AHI)分为四组:单纯打鼾组(AHI<5,健康受试者,n = 11)、轻度OSA组(5≤AHI<15,n = 11)、中度OSA组(15≤AHI<30,n = 30)和重度OSA组(AHI≥30,n = 59)。比较所有受试者的人体测量参数和睡眠效率。使用一种新算法分析睡眠期间前颈部振动信号的振幅变化频率,以获得打鼾爆发指数(SBI)。将数据与AHI和动脉血氧饱和度指数(Δ指数)进行比较。

结果

各组之间在年龄和睡眠效率方面无显著差异。Bland-Altman分析显示,SBI与AHI之间的一致性(r = 0.906,P<0.001)优于Δ指数与AHI之间的一致性(r = 0.859,P<0.001)。此外,受试者工作特征(ROC)曲线显示,与Δ指数相比,SBI在区分中度和重度OSA患者时具有更强的敏感性和特异性(SBI和Δ指数的敏感性分别为81.4%和66.4%;特异性分别为96.7%和86.7%)。

结论

SBI可作为一种便携式工具,用于在非医院环境中筛查患者并评估OSA严重程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验