Suppr超能文献

学龄儿童逻辑论证的分布式神经表征。

Distributed neural representations of logical arguments in school-age children.

作者信息

Mathieu Romain, Booth James R, Prado Jérôme

机构信息

Laboratoire Langage, Cerveau et Cognition (L2C2), Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, 69675, Bron, France.

出版信息

Hum Brain Mapp. 2015 Mar;36(3):996-1009. doi: 10.1002/hbm.22681. Epub 2014 Oct 30.

Abstract

Children's understanding of linear-order (e.g., Dan is taller than Lisa, Lisa is taller than Jess) and set-inclusion (i.e., All tulips are flowers, All flowers are plants) relationships is critical for the acquisition of deductive reasoning, that is, the ability to reach logically valid conclusions from given premises. Behavioral and neuroimaging studies in adults suggest processing differences between these relations: While arguments that involve linear-orders may be preferentially associated with spatial processing, arguments that involve set-inclusions may be preferentially associated with verbal processing. In this study, we used functional magnetic resonance imaging to investigate whether these processing differences appear during the period of elementary school in development. Consistent with previous studies in adults, we found that arguments that involve linear-order and set-inclusion relationships preferentially involve spatial and verbal brain mechanisms (respectively) in school-age children (9-14 year olds). Because this neural sensitivity was not related to age, it likely emerges before the period of elementary education. However, the period of elementary education might play an important role in shaping the neural processing of logical reasoning, as indicated by developmental changes in frontal and parietal regions that were dependent on the type of relation.

摘要

儿童对线性顺序(例如,丹比丽莎高,丽莎比杰斯高)和集合包含(即,所有郁金香都是花,所有花都是植物)关系的理解对于演绎推理能力的获得至关重要,演绎推理即从给定前提得出逻辑上有效结论的能力。针对成年人的行为和神经成像研究表明,这些关系之间存在加工差异:涉及线性顺序的论证可能优先与空间加工相关联,而涉及集合包含的论证可能优先与语言加工相关联。在本研究中,我们使用功能磁共振成像来探究这些加工差异在小学阶段的发育过程中是否会出现。与先前针对成年人的研究一致,我们发现,涉及线性顺序和集合包含关系的论证在学龄儿童(9至14岁)中分别优先涉及空间和语言脑机制。由于这种神经敏感性与年龄无关,它可能在小学教育阶段之前就已出现。然而,正如额叶和顶叶区域依赖于关系类型的发育变化所表明的那样,小学教育阶段可能在塑造逻辑推理的神经加工过程中发挥重要作用。

相似文献

1
Distributed neural representations of logical arguments in school-age children.
Hum Brain Mapp. 2015 Mar;36(3):996-1009. doi: 10.1002/hbm.22681. Epub 2014 Oct 30.
4
Putting the pieces together: Generating a novel representational space through deductive reasoning.
Neuroimage. 2018 Dec;183:99-111. doi: 10.1016/j.neuroimage.2018.07.062. Epub 2018 Aug 4.
5
Neural interaction between logical reasoning and pragmatic processing in narrative discourse.
J Cogn Neurosci. 2015 Apr;27(4):692-704. doi: 10.1162/jocn_a_00744. Epub 2014 Oct 16.
6
Multiple neural representations of elementary logical connectives.
Neuroimage. 2016 Jul 15;135:300-10. doi: 10.1016/j.neuroimage.2016.04.061. Epub 2016 Apr 29.
7
Recomposing a fragmented literature: how conditional and relational arguments engage different neural systems for deductive reasoning.
Neuroimage. 2010 Jul 1;51(3):1213-21. doi: 10.1016/j.neuroimage.2010.03.026. Epub 2010 Mar 17.
8
The relation between spatial thinking and proportional reasoning in preschoolers.
J Exp Child Psychol. 2015 Apr;132:213-20. doi: 10.1016/j.jecp.2015.01.005. Epub 2015 Feb 20.
10
Neurocognitive basis of deductive reasoning in children varies with parental education.
Hum Brain Mapp. 2021 Aug 1;42(11):3396-3410. doi: 10.1002/hbm.25441. Epub 2021 May 12.

引用本文的文献

1
Neurocognitive basis of deductive reasoning in children varies with parental education.
Hum Brain Mapp. 2021 Aug 1;42(11):3396-3410. doi: 10.1002/hbm.25441. Epub 2021 May 12.
2
Are Rank Orders Mentally Represented by Spatial Arrays?
Front Psychol. 2021 Apr 20;12:613186. doi: 10.3389/fpsyg.2021.613186. eCollection 2021.
3
A neuroimaging dataset of deductive reasoning in school-aged children.
Data Brief. 2020 Oct 14;33:106405. doi: 10.1016/j.dib.2020.106405. eCollection 2020 Dec.
4
Impaired neural processing of transitive relations in children with math learning difficulty.
Neuroimage Clin. 2018;20:1255-1265. doi: 10.1016/j.nicl.2018.10.020. Epub 2018 Oct 23.

本文引用的文献

2
Multiple routes to mental animation: language and functional relations drive motion processing for static images.
Psychol Sci. 2013 Aug;24(8):1379-88. doi: 10.1177/0956797612469209. Epub 2013 Jun 17.
4
Increased functional selectivity over development in rostrolateral prefrontal cortex.
J Neurosci. 2011 Nov 23;31(47):17260-8. doi: 10.1523/JNEUROSCI.1193-10.2011.
5
Deduction without awareness.
Acta Psychol (Amst). 2012 Jan;139(1):244-53. doi: 10.1016/j.actpsy.2011.09.011. Epub 2011 Oct 22.
6
Some is not enough: quantifier comprehension in corticobasal syndrome and behavioral variant frontotemporal dementia.
Neuropsychologia. 2011 Nov;49(13):3532-41. doi: 10.1016/j.neuropsychologia.2011.09.005. Epub 2011 Sep 12.
7
Large scale brain activations predict reasoning profiles.
Neuroimage. 2012 Jan 16;59(2):1752-64. doi: 10.1016/j.neuroimage.2011.08.027. Epub 2011 Aug 24.
8
The brain network for deductive reasoning: a quantitative meta-analysis of 28 neuroimaging studies.
J Cogn Neurosci. 2011 Nov;23(11):3483-97. doi: 10.1162/jocn_a_00063. Epub 2011 May 13.
9
Logical processing of set inclusion relations in meaningful text.
Mem Cognit. 1976 Nov;4(6):730-40. doi: 10.3758/BF03213241.
10
Distinct representations of subtraction and multiplication in the neural systems for numerosity and language.
Hum Brain Mapp. 2011 Nov;32(11):1932-47. doi: 10.1002/hbm.21159. Epub 2011 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验