Gerbier Romain, Leroux Vincent, Couvineau Pierre, Alvear-Perez Rodrigo, Maigret Bernard, Llorens-Cortes Catherine, Iturrioz Xavier
College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France.
College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS, UMR 7241, Paris, France; and INSERM, U1050, Paris, France
FASEB J. 2015 Jan;29(1):314-22. doi: 10.1096/fj.14-256339. Epub 2014 Oct 30.
Apelin is the endogenous ligand of the orphan 7-transmembrane domain GPCR APJ, now named the apelin receptor (ApelinR). Apelin plays a prominent role in body fluid and cardiovascular homeostasis. To better understand the structural organization of the ApelinR, we built 3 homology 3-dimensional (3D) models of the human ApelinR using the validated cholecystokinin receptor-1 3D model or the X-ray structures of the β2-adrenergic and CXCR4 receptors as templates. Docking of the pyroglutamyl form of apelin 13 (pE13F) into these models revealed the conservation at the bottom of the binding site of a hydrophobic cavity in which the C-terminal Phe of pE13F was embedded. In contrast, at the top of the binding site, depending on the model, different interactions were visualized between acidic residues of the ApelinR and the basic residues of pE13F. Using site-directed mutagenesis, we showed that Asp 92, Glu 172, and Asp 282 of rat ApelinR are key residues in apelin binding by interacting with Lys 8, Arg 2, and Arg 4 of pE13F, respectively. These residues are only seen in the CXCR4-based ApelinR 3D model, further validating this model. These findings bring new insights into the structural organization of the ApelinR and the mode of apelin binding.
阿片肽是孤儿7跨膜结构域G蛋白偶联受体APJ的内源性配体,现称为阿片肽受体(ApelinR)。阿片肽在体液和心血管稳态中发挥着重要作用。为了更好地理解阿片肽受体的结构组织,我们以经过验证的胆囊收缩素受体-1三维(3D)模型或β2肾上腺素能受体和CXCR4受体的X射线结构为模板,构建了3种人阿片肽受体的同源3D模型。将焦谷氨酰化形式的阿片肽13(pE13F)对接至这些模型中,结果显示在结合位点底部存在一个保守的疏水腔,pE13F的C末端苯丙氨酸嵌入其中。相比之下,在结合位点顶部,根据模型的不同,可观察到阿片肽受体的酸性残基与pE13F的碱性残基之间存在不同的相互作用。通过定点诱变,我们发现大鼠阿片肽受体的天冬氨酸92、谷氨酸172和天冬氨酸282分别与pE13F的赖氨酸8、精氨酸2和精氨酸4相互作用,是阿片肽结合的关键残基。这些残基仅在基于CXCR4的阿片肽受体3D模型中可见,进一步验证了该模型。这些发现为阿片肽受体的结构组织和阿片肽结合模式带来了新的见解。