Suppr超能文献

利用同步辐射的硬X射线磁显微镜和局部磁化分析

Hard-X-ray magnetic microscopy and local magnetization analysis using synchrotron radiation.

作者信息

Suzuki Motohiro

机构信息

Japan Synchrotron Radiation Research Institute/SPirng-8, Kouto, Sayo, Hyogo 679-5198, Japan

出版信息

Microscopy (Oxf). 2014 Nov;63 Suppl 1:i14. doi: 10.1093/jmicro/dfu041.

Abstract

X-ray measurement offers several useful features that are unavailable from other microscopic means including electron-based techniques. By using X-rays, one can observe the internal parts of a thick sample. This technique basically requires no high vacuum environment such that measurements are feasible for wet specimens as well as under strong electric and magnetic fields and even at a high pressure. X-ray spectroscopy using core excitation provides element-selectivity with significant sensitivities to the chemical states and atomic magnetic moments in the matter. Synchrotron radiation sources produce a small and low-divergent X-ray beam, which can be converged to a spot with the size of a micrometer or less using X-ray focusing optics. The recent development in the focusing optics has been driving X-ray microscopy, which has already gone into the era of X-ray nanoscopy. With the use of the most sophisticated focusing devices, an X-ray beam of 7-nm size has successfully been achieved [1]. X-ray microscopy maintains above-mentioned unique features of X-ray technique, being a perfect complement to electron microscopy.In this paper, we present recent studies on magnetic microscopy and local magnetic analysis using hard X-rays. The relevant instrumentation developments are also described. The X-ray nanospectroscopy station of BL39XU at SPring-8 is equipped with a focusing optics consisting of two elliptic mirrors, and a focused X-ray beam with the size of 100 × 100 nm(2) is available [2]. Researchers can perform X-ray absorption spectroscopy: nano-XAFS (X-ray absorption fine structure) using the X-ray beam as small as 100 nm. The available X-ray energy is from 5 to 16 keV, which allows nano-XAFS study at the K edges of 3d transition metals, L edges of rare-earth elements and 5d noble metals. Another useful capability of the nanoprobe is X-ray polarization tunability, enabling magnetic circular dichroism (XMCD) spectroscopy with a sub-micrometer resolution. Scanning XMCD imaging, XMCD measurement in local areas, and element-specific magnetometry for magnetic particles/magnetic devices as small as 100 nm can be performed. Nano-XAFS application includes visualization of the chemical state in a particle catalyst [3] and phase-change memory devices [4]. For magnetic microscopic study, magnetization reversal processes of an individual magnetic CoPt dot in bit-patterned media have directly been observed [2]. Imaging of the chemical distribution and magnetic domain evolution in a Nd-Fe-B sintered magnet in demagnetization processes is presented.

摘要

X射线测量具有一些其他微观手段(包括基于电子的技术)所不具备的有用特性。通过使用X射线,可以观察厚样品的内部结构。该技术基本上不需要高真空环境,因此对于湿样品以及在强电场和磁场甚至高压下都可以进行测量。利用芯激发的X射线光谱能够对物质中的化学状态和原子磁矩具有显著灵敏度地提供元素选择性。同步辐射源产生一个小且发散度低的X射线束,使用X射线聚焦光学器件可以将其会聚到尺寸为微米或更小的光斑。聚焦光学器件的最新发展推动了X射线显微镜技术,该技术已经进入了X射线纳米显微镜时代。通过使用最先进的聚焦装置,已经成功实现了尺寸为7纳米的X射线束[1]。X射线显微镜保留了上述X射线技术的独特特性,是电子显微镜的完美补充。

在本文中,我们展示了关于使用硬X射线进行磁显微镜和局部磁分析的最新研究。还描述了相关的仪器发展情况。SPring-8的BL39XU的X射线纳米光谱站配备了由两个椭圆镜组成的聚焦光学器件,并且可以获得尺寸为100×100纳米²的聚焦X射线束[2]。研究人员可以进行X射线吸收光谱:使用小至100纳米的X射线束进行纳米XAFS(X射线吸收精细结构)分析。可用的X射线能量范围为5至16千电子伏特,这使得能够在3d过渡金属的K边、稀土元素的L边和5d贵金属处进行纳米XAFS研究。纳米探针的另一个有用功能是X射线偏振可调性,能够实现具有亚微米分辨率的磁圆二色性(XMCD)光谱分析。可以进行扫描XMCD成像、局部区域的XMCD测量以及对小至100纳米的磁性颗粒/磁性器件进行元素特异性磁测量。纳米XAFS的应用包括可视化颗粒催化剂[3]和相变存储器件[4]中的化学状态。对于磁显微镜研究,已经直接观察到了位图案介质中单个磁性CoPt点的磁化反转过程[2]。展示了在退磁过程中钕铁硼烧结磁体中化学分布和磁畴演变的成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验