Suppr超能文献

通过扫描透射电子显微镜-电子能量损失谱对铝基准晶体中的局域电子态进行直接观测。

Direct observations of local electronic states in an Al-based quasicrystal by STEM-EELS.

作者信息

Seki Takehito, Abe Eiji

机构信息

Dept. of Materials Engineering & Science, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.

出版信息

Microscopy (Oxf). 2014 Nov;63 Suppl 1:i17-i18. doi: 10.1093/jmicro/dfu069.

Abstract

Most quasicrystals (QCs) reveal pseudogaps in their density of states around Fermi level, and hence the stability of QCs have been discussed in terms of energetic gains in electron systems. In fact, many QCs have been discovered by tuning valence electron density based on Hume-Rothery rule. Therefore, understanding electronic structures in QCs may provide an important clue for their stabilization mechanism. Generally, it has been frequently discussed based on an interaction between Fermi surface and Brillouin zone boundary within the framework of nearly free electron model, which is believed to be an underlying physics of a Hume-Rothery's empirical criteria. However the hybridization effect also stabilize electron system, particularly in Al-transition metal system, in which a lot of quasicrystalline phases were discovered. Therefore, the electronic structures of QCs have not yet been fully understood, whereas their atomic structures have been studied well in terms of configuration entropy by scanning transmission electron microscopy (STEM) [1]. In the present work, we investigate local electronic states in Al-based QCs using electron energy loss spectroscopy (EELS) combined with STEM, by which EELS spectra with sub-Å probe and atomic structure can be obtained simultaneously. We report STEM-EELS results on AlCuIr decagonal phases [2].jmicro;63/suppl_1/i17-a/DFU069F1F1DFU069F1Fig. 1.Core-loss edges obtained from cluster-centers and cluster-edges. Al L1 (left) Ir O23, Ir N67 (center) and Cu L23 (right). Principal components analysis clearly shows up the atomic-site dependence of plasmon loss spectra in a two-dimensional map. Qualitatively, there seems to be certain correlations between the plasmon peaks and the core-loss edges, Al L1, Ir O23, Ir N67 and Cu L23, all of which reveal different behaviors at the cluster centers and the edges (Fig. 1). All results indicate the cluster centers have metallic states and the cluster edges have covalent states in comparison. First-principles calculations confirm the unusual electronic state. On the basis of the calculated DOS and charge-density map, we conclude Al-Ir pairs, which are mainly located at the cluster edges, hybridize their orbitals and Cu atoms are localized at cluster center without hybridization. We analyze a distribution of the hybridized orbitals by Fourier transformation of electron localization function. The distribution seems like a 10-fold standing wave with Fermi wave length. It suggests that the Hume-Rothery mechanism works even when hybridization effect mainly contributes to pseudogap formation. In other words, global distribution of hybridized orbitals is important to stabilize structures whereas usually only local atomic configurations are discussed. Moreover, in the 10-fold standing wave, no distinct peak appears at the cluster centers. It means hybridized orbitals located at cluster centers are unable to contribute to the Hume-Rothery mechanism. It may be the reason why the metallic regions appear at the cluster centers.

摘要

大多数准晶体(QCs)在费米能级附近的态密度中显示出赝能隙,因此人们从电子系统的能量增益角度讨论了准晶体的稳定性。事实上,许多准晶体是根据休谟-饶塞里规则通过调节价电子密度发现的。因此,了解准晶体中的电子结构可能为其稳定机制提供重要线索。一般来说,人们经常在近自由电子模型的框架内基于费米面与布里渊区边界之间的相互作用进行讨论,这被认为是休谟-饶塞里经验准则的潜在物理原理。然而,杂化效应也能使电子系统稳定,特别是在铝-过渡金属系统中,人们发现了许多准晶相。因此,尽管通过扫描透射电子显微镜(STEM)从构型熵的角度对准晶体的原子结构进行了很好的研究[1],但其电子结构尚未得到充分理解。在本工作中,我们使用电子能量损失谱(EELS)结合STEM研究了铝基准晶体中的局域电子态,通过这种方法可以同时获得具有亚埃探针的EELS谱和原子结构。我们报告了关于AlCuIr十边形相的STEM-EELS结果[2]。

jmicro;63/suppl_1/i17-a/DFU069F1F1DFU069F1

图1.从团簇中心和团簇边缘获得的芯损边。Al L1(左)、Ir O23、Ir N67(中)和Cu L23(右)。主成分分析在二维图中清楚地显示了等离子体激元损失谱的原子位置依赖性。定性地说,等离子体激元峰与芯损边Al L1、Ir O23、Ir N67和Cu L23之间似乎存在一定的相关性,所有这些在团簇中心和边缘都表现出不同的行为(图1)。所有结果表明,相比之下,团簇中心具有金属态,团簇边缘具有共价态。第一性原理计算证实了这种不寻常的电子态。根据计算得到的态密度和电荷密度图,我们得出结论:主要位于团簇边缘的Al-Ir对轨道发生杂化,而Cu原子位于团簇中心且未发生杂化。我们通过电子局域函数的傅里叶变换分析了杂化轨道的分布。这种分布看起来像一个具有费米波长的10重驻波。这表明即使杂化效应主要导致赝能隙形成,休谟-饶塞里机制仍然起作用。换句话说,杂化轨道的全局分布对于稳定结构很重要,而通常只讨论局部原子构型。此外,在10重驻波中,团簇中心没有出现明显的峰。这意味着位于团簇中心的杂化轨道无法对休谟-饶塞里机制做出贡献。这可能就是团簇中心出现金属区域的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验