Deepthi Angeline, Liew Chong Wai, Liang Zhao-Xun, Swaminathan Kunchithapadam, Lescar Julien
Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
PLoS One. 2014 Oct 31;9(10):e110912. doi: 10.1371/journal.pone.0110912. eCollection 2014.
Large-scale production of bis-3'-5'-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A) sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I) site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability.
大规模生产双-3'-5'-环二鸟苷酸(c-di-GMP)将有助于对众多由这种第二信使分子控制的细菌信号通路和表型进行生物学研究,例如毒力和生物膜形成。C-di-GMP作为疫苗佐剂也是一种潜在的有趣分子。尽管可以进行c-di-GMP的化学合成,但其产量与大规模生产不兼容。来自嗜热栖热菌的独立二鸟苷酸环化酶(DGC或GGDEF结构域)tDGC能够大量稳健地酶促生产c-di-GMP。为了了解tDGC热稳定性的结构关联、其催化机制和反馈抑制,我们确定了活性位点彼此相对的活性样二聚体构象以及由结合在抑制性(I)位点的c-di-GMP锁定的无活性二聚体构象的结构。我们还报告了tDGC的一个单突变体的结构,该突变体在I位点发生R158A突变,消除了产物抑制和无效二聚化。与来自嗜温菌的结构已表征的DGC同源物进行比较,发现在嗜热酶tDGC中存在更多数量的盐桥。依次破坏tDGC特有的每个盐桥的突变体的变性实验确定了赋予热稳定性至关重要的三个盐桥。